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Abstract
Number theory has a rich historical background. It is one of the 
purest areas of mathematics because of the attraction for the 
representation of integers. For a long time, the study of number 
theory was the area of pure mathematics without practical 
applications.It has many applications in the area of geometry, 
probability theory, quantum mechanics and quantum field theory. 
The number of representations by any quadratic form depends 
mostly on the solution given by that particular form.The results of 
the present paper can be used in coding theory to code and decode 
information and signals for security management. Application of 
representation of quadratic forms in Cryptography is just one of 
the practical applications in computer systems. 
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I. Introduction
Number theory has a rich historical background. It was one of 
the purest areas of mathematicsbecause of the attraction for the 
representation of integers. For a long time, the study of number 
theory was the area of pure mathematics without practical 
applications.Representations by the quadratic forms are one of 
the main branches of mathematics. It has many applications in 
the area of geometry, probability theory, quantum mechanics and 
quantum field theory. According to the results given by Duke [6], 
Dickson [5], Alaca [1] and Alaca andWilliams [2], Chetna et al. 
[4], we have seen that number of representations by any quadratic 
form depends mostly on the solution given by that particular form.
Keeping in view the results the following theorem is being proved. 
In the following theorem we are particularly considering the case 
when the prime number is odd. For elementary results, we follow 
Burton [3] and Niven [7].

Theorem:- Let p is an odd prime, where . Let us consider the diagonal form in n variables:

		  (1)

where the number of variables n1+⋯+ns = n with their determinants d1,………,ds are relatively prime to p and a1,………,ai are the 
integers which are prime to p for the given ∈1≥0,………,∈i≥0.

Let  and if  hold, then we must have  where 
 are pair wise disjoint variables. From here we can implies that if  hold, then we have γ=∞.

Further let B=b(t) be an integer which is determined according to the conditions given below:

			   (2)

Then,

1. 				    (3)

2. 		
								        (4)

3. 

	 		 (5)
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4. 

	

	 (6)

Proof: - By Chetna et al. [4],we have

 
Therefore

					     (7)

For t ≤ γ, we have

	 (8)

Therefore for t ≥ 1 the formula (7) and (8) are given by 

			   (9)
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In particular, when 

	 (10)

By using the formula (9), we are able to obtain the value for 
μ(p)

1. On taking into consideration the case w ≤ γ, w ≤ 2u + e1 and 
by using (9) and (10), we have got the formula (3)

2. When we consider γ ≤ w, γ ≤ 2u + e1,we obtain the formula 
(4)

3. On taking 2u + e1< γ ≤ w, we obtain the formula (5)

4. When we take 2u + e1< w ≤ γ, we obtain the formula (6)

which proves the result. 

Thus, the above theorem concludes that if an odd prime p is not 
divided by z, then we can say that u = 0, vi = ∞(i=1,………,n), γ=∞, 
m=pwm1, where m1 is prime to p. Moreover, we also observe that 
if we take z = 1, then there is no need to assume that the diagonal 
form f is congruent to . The above given theorem gives 
the representation of quadratic form for the variables equals to or 
greater than 4. The results can be used in coding theory to code 
and decode information and signals for security management. 
Application of representation of quadratic forms in Cryptography 
is just one of the practical applications in computer systems. 
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