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Abstract 
RSA algorithm uses Integer Factorization as the backbone of data 
security while Diffie-Hellman Algorithm uses Discrete Logarithm 
to provide platform for secure key exchange. In this paper, we 
provide algorithm to merge both of them to provide a user with 
even higher level of data security. Actually, our intent is to secure 
data of smaller as well as larger size by obtaining one randomly 
chosen key pair from set of RSA keys and one randomly chosen 
secret key using Diffie-Hellman algorithm and then applying RSA 
encryption to make even public components of Diffie-Hellman 
algorithm inaccessible for any eavesdropper freely. We design 
the encryption method, which uses Diffie-Hellman Secret Key in 
such a way that it would not only encrypt the data but also does 
not increase the size of it any further. On top of that, encrypted 
exchange of public components of Diffie-Hellman part of the 
system makes it hidden from all other than intended users to see 
Diffie-Hellman generator and prime modulus. This will make 
our algorithm M*N times complex to break using even the latest 
version of Brute Force attack, where M and N are corresponding 
complexities imposed by the Diffie-Hellman and RSA algorithms 
respectively.
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I. Introduction 
In traditional cryptography, cipher systems have been analyzed 
by modeling cryptographic algorithms as ideal mathematical 
objects. If any attacker is able to find any sophisticated strategy, 
this would lead to a low-complexity algorithm for the solution of a 
problem commonly believed to be intractable. This can be shown 
by complexity-theoretical reductions. Trust gained in this way is 
independent of the concrete implementation of a cryptographic 
algorithm. RSA algorithm for Integer Factorization [1-3] and 
Diffie-Hellman Algorithm for Discrete Logarithm [4-5] is already 
exists in literature to provide a platform for secure key exchange 
[6-8]. RSA encryption is secured because it imposes immense 
computational complexity to a “Hacker” by forcing him to go 
through billions and even more of computations in order to find 
an exact “Private Key” [9]. However, in the process it appears 
that some large volume of data becomes almost impossible to 
handle under RSA encryption technique. Besides security of RSA, 
encryption also depends on length of the keys used. With larger 
keys, encryption becomes more complex to the end users in the 
time domain. On the other hand, encrypted exchange of public 
components of Diffie-Hellman part of the system makes it hidden 
from all other than intended users to see Diffie-Hellman generator 
and prime modulus in already exists in literature [10]. As it is a 
well-known fact that RSA algorithm is used in PKC (Public Key 
Cryptosystem) [11-12] because of its unique nature of providing 
means for User Authentication [13-14] and Diffie-Hellman 

algorithm for its simple yet very effective Secure Key Exchange 
property. Hence, we shall use both of them to good effect.
There are two publicly disclosed prime numbers known as 
generator (g) and modulus (n) are used in Diffie-Hellman key 
Exchange algorithm. If these two are exchanged among parties 
using RSA encryption, then to find such Diffie-Hellman Secret Key 
one has to break the RSA encryption. Thus, it will be immensely 
difficult for an eavesdropper to find the secret key, which can then 
be used by end users for encryption and decryption purposes. 
Of course, RSA will be employed for the User Authentication 
purpose. In this fashion the computational complexity does not 
increase for end users and at the same time data is also M*N times 
more secure; M, N are the complexities of solving DLP(Discrete 
Logarithm Problem) and RSA Problem [15] respectively.

II. Points of Concern Related to Cryptographic 
Algorithm
Cryptography is the science of writing in secret code and is an 
ancient art; the first documented use of cryptography in writing 
dates back to circa 1900 B.C. when an Egyptian scribe used non-
standard hieroglyphs in an inscription. Some experts argue that 
cryptography appeared spontaneously sometime after writing was 
invented, with applications ranging from diplomatic missives 
to war-time battle plans. It is no surprise, then, that new forms 
of cryptography came soon after the widespread development 
of computer communications. In data and telecommunications, 
cryptography is necessary when communicating over any untrusted 
medium, which includes just about any network, particularly the 
Internet. There are several ways of classifying cryptographic 
algorithms. For purposes of this paper, they will be categorized 
based on the number of keys that are employed for encryption and 
decryption, and further defined by their application and use.

A. Secure Key Exchange  	
Generally in Hybrid Cryptographic schemes [16-17] Session Key 
[18-19] is used as secret key for encryption decryption purposes 
following the mechanism of Secret Key Cryptography and the 
secret session key itself is exchanged between communicating 
parties using Public Key Encryption Decryption policy. In our 
own approach we do not wish to send encrypted secret key along 
with encrypted data rather we try to generate same secret key at 
both ends using Diffie-Hellman key exchange policy.
More over we exchange public components of this algorithm 
keeping them encrypted with RSA encryption decryption technique 
and therefore Secret Keys are far from being hacked. 

B. User Authentication
RSA algorithm is used in this system to provide platform for 
authentication for users connected through insecure channels. 
Using well-known Hash functions [20] a hash value can be 
generated which will be encrypted with senders’ private key and 
then can be sent as a digital signature along with Diffie-Hellman 
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public components.
It is important that while exchanging Diffie-Hellman public 
components a Hash function is used to compute hash value for 
users’ authentication. Because otherwise Man in the Middle [21- 
22] may still be left with a little chance to reveal Diffie-Hellman 
public components even though we kept it encrypted with RSA 
public key. 

C. Degree of Security
The Secret keys in our system are almost impossible to be hacked 
because

Even before Diffie-Hellman, public components are •	
exchanged among parties already RSA public key exchange 
has taken place and Diffie-Hellman public components will 
be exchanged using those RSA public keys. Therefore, only 
intended users are able to see those public components.
While exchanging Diffie-Hellman public components RSA •	
is also used for users’ authentication. Hence, all Man in 
the Middle attack can be brought to justice using Digital 
Signatures [9] as evidence.
Using Brute Force attack, if somebody tries to reveal the •	
secret key in computationally feasible time then he/she has 
to not only solve Integer Factorization problem in feasible 
time but also has to solve Discrete Logarithm problem at 
the same time.

D. Computational Complexity 
Simply if we look at the computational complexities of both of 
RSA and Diffie-Hellman algorithm then we must realize that it 
takes more time with keys of larger size than that of smaller 
ones. 
The fastest classical algorithm to solve Discrete Logarithm problem 
is the “Number Field Sieve” with heuristic time complexity [3].
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On the other hand, the best-known algorithm for Integer 
Factorization is “GNFS” (General Number Field Sieve) which 
has a time complexity of Ө [3].

				  

Our algorithm will impose a computational complexity, which 
is equal to the multiplication of these two above-mentioned 
expressions because the public components of Diffie-Hellman 
are protected by RSA public key encryption.

III. Results and Discussion

A. Analysis of Diffie-Hellman algorithm:
By using Diffie-Hellman algorithm, we can find secret key, which 
can be employed in Public Key Cryptography, in the way given 
below –

A small Example:
Person A
Choose, x=119
Send to Person B: X = 113119 mod 107 = 96
KA = 74119 mod 107 = 73

Person B
Choose y=117
Send to Person A: Y = 113117 mod 107 = 74
KB = 96117 mod 107 = 73

Here both Person A and Person B select the base g (113) and the 
prime number n (107) through mutual consent. Now, based on 
their own private key and the public key learned from the other 
party, Person A and Person B have computed their secret keys, 
KA and KB, respectively, which are equal to gxy mod n.
We can see very clearly that while Person A and B are 
communicating with each other, as their private keys are kept 
secret, the Public keys KA and KB (both of which are same and 
value 73 in this case) are safe from any third party who might be 
eavesdropping. 				  
Important Analysis: In the Secret Key Exchange technique, Secret 
Key generated is safe because there is no known polynomial time 
algorithm to solve Discrete Logarithm problem. However, a simple 
encryption based on this Secret Key may disclose the drawbacks 
of this algorithm a little further.
Suppose person A wants to send a secret password “pgeftt123” 
to person B.
Using his/her own secret key A encrypts the password “pgeftt123” 
as “*j45 Q%9” (supposedly), by varying ASCII values of the 
characters of the password string with the secret key value directly. 
Now some third party, can see that every time there is a repetition 
in the input password String like “pgeftt123123” there will be 
some encrypted vale which is equal to “*j45 Q%9Q%9”. 
Therefore, it is very easy for some well-equipped eavesdropper 
to understand that the ASCII values of the characters of the real 
message is changed using the secret key value in a one to one 
mapping from one character set to the same character set. 
This is why Secret Key Encryption algorithms like Cipher 
Feedback (CFB) [23] and Cipher Block Chaining (CBC) [24], 
use feedbacks from previous ciphers to keep repeatedly occurring 
Plain texts not result in same ciphers.

B. Analysis of RSA Algorithm:
General procedure of the implementation of RSA secret key 
cryptography With an Example:

Select p=3 and q=5. 1.	
The modulus n = pq = 15. 2.	
The value e must be relatively prime to (p-1) (q-1) = (2) 3.	
(4) = 8. 
Select e=11 4.	
The value d must be chosen so that (ed-1)/[(p-1)(q-1)] is an 5.	
integer. Thus, the value (11d-1)/ [(2) (4)] = (11d-1)/8 must 
be an integer. Calculate one possible value, d=3. 
Suppose we wish to send a string “Encryption”, we 6.	
will convert the string to the decimal representation 
of the BYTE values of the characters, which would be 
327879595089594566668142.
The sender encrypts each digit one at a time (we have to 7.	
because the modulus is so small) using the public key value 
(e, n) = (11, 15). Thus, each Plain text digits is reformed 
using the function Ci = Mi11 mod 15. Then input digit string 
79595089594566668142 becomes “4177008413638414702
8997231958”. 
The receiver decrypts each digit using the private key 8.	
value (d, n) = (3, 15). Thus, each Cipher digit is decrypted 
using the function Mi = Ci3 mod 15. The input digit string 
“41770084136384147028997231958” changes into a 
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digit string “79595089594566668142” and then it is again 
converted to plaintext string.					   

Now the important things that we notice are	 as follows:-
In the given example above the text message is a string •	
“Encryption”
The Byte code “79595089594566668142” is generated from •	
the given text. Someone may compute the ASCII code from 
the given text message which is “91556947314004” instead 
of the Byte code and then use it for further computation.
Then this byte /ASCII code is encrypted with the RSA “Public-•	
Key”. For an example “91556947314004” is coded by Public 
key value (e, n) = (11, 15) as “51160146336452333”.
Now the problem is that feeding this byte code or ASCII code •	
directly to the RSA algorithm will make this encryption easier 
for the “Brute-Force” attack to break it. Because in “Brute-
Force” attack series of “Private-Key” s are used to decrypt the 
encrypted message until it finds some relevant Byte/ASCII 
code from which it may generate the “plain text”.

Now Under Brute-Force attack someone may find the private 
key, which will decrypt “41770084136384147028997231958” as 
“79595089594566668142” and simultaneously generate the text 
message as “Encryption”. However, if we already change the byte/
ASCII code with Secret-Key computed using the Diffie-Hellman, 
then even if the Brute-force attack may find the Private Key and 
decrypt the encrypted message, but it will not give him/her the 
ASCII/Byte code, rather it will give some ambiguous code for the 
“Code-Breaker” to understand. Therefore, he/she will not be sure 
if what he/she has found by decrypting the “encrypted-text” is the 
real byte/ASCII code or not. To make sure that Diffie-Hellman 
Secret key has to be found as well as the RSA private Key.

1. Analysis of Proposed Algorithm:
There are two basic steps that constitute the whole process of Data 
Encryption, Data Transfer, Data Decryption and those steps are 
Key Exchange: Key Exchange is done in two different parts

(i). RSA Key Exchange:
Step 1: Set Pa, Qa; both are random large prime numbers of 
length L bits for user A.
Step 2: Set Na = Pa * Qa (Na is called modulus) for user A.	
Step 3: Select Ea that is relatively prime to (i.e., it does not divide 
evenly into) the product (Pa- 1)*(Qa-1). The number Ea along 
with Na works as the public exponent for user A.
Set Ea = generateE (Pa, Qa, l).

Step 4: Set Da = call calculateD (Pa, Qa, Ea). The Variable Da 
along with Na works as the secret exponent of user A.
Step 5: User A sends Na, Ea to user B.
Step 6: User B sets her own Pb, Qb; both are random large prime 
numbers of length L bits for user B.
User B receives Na, Ea from user A. 

Step 7: Set Nb = Pb*Qb (Nb is called modulus) for user B.

Step 8: Select Eb for user B using similar way showed in step3 
stated above. The number Eb along with Nb works as the public 
exponent for user B.
Step 9: Set Db = call calculateD (Pb, Qb, Eb). The Variable Db 
along with Nb works as the secret exponent of user B. User B 
sends Nb, Eb to user A.

Step 10: User A receives Nb, Eb.  

/* All public exponents have been exchanged
 Now user A posses Pa, Qa, Na, Ea, Da, Nb, Eb and user B possess 
Pb, Qb, Nb, Eb, Db,
 Na, Ea. 
    Users can forget Pa, Qa and Pb, Qb */

(ii). Secret Key Exchange: 
Step 1: Set p, g where p is a randomly chosen prime modulus and 
g is the generator for user A.
Step 2: Set x, where x is a randomly chosen large number (This 
is the secret of user A).
Step 3: Set Ka = g^x mod p.
Step 4: User A encrypts g, p, Ka with the public key of the intended 
recipient of the message and sends it to User B.
Step 5: User B receives encrypted g, p and Ka, sent by user A. 
User B then decrypts it and finds g, p and Ka.
Step 6: Set y, a randomly chosen large number for user B.
Step 7: Set Kb = g^y mod p. Set DHKey = (Ka) ^y mod p 
Step 8: User B encrypts Kb with the public key of User A.
Step 9: User B then sends encrypted Kb to user A.
Step 10: User A receives encrypted Kb, sent by user B.
Step 11: User A decrypts it and finds Kb.	
Step 12: Set DHKey = (Kb) ^x mod p (DHKey is the secret 
Diffie-Hellman key for user 
//(DHKey is the secret Diffie-Hellman key for user B).		
		      
Using TCP connection we can send and receive data and/or keys 
generated through this algorithm.

As TCP is well known, it is out of the scope of this part of the 
discussion to elaborate on how TCP can be used to exchange Keys 
and/or encrypted data.

Fig 1: Combination of RSA and Secret Key Exchange

Fig. 2: Key Exchange of Proposed Algorithm
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2. Data Exchange 
According to this algorithm, Data Exchange takes place using 
the following steps:
Step 1: At first user data and/or application data (assume this 
user as user A) is read from the system and converted into its 
corresponding Byte-Code.
Step 2: Now the Byte-Code is converted into its corresponding 
big integer form.
Step 3: Now this Byte code will be converted into Cipher using 
the algorithm called SecureByteConversion (Byte code) which 
described below.
Step 4: This Cipher is now ready to be sent form one user to the 
other through the vulnerable network.
Step 5: Upon receiving the Cipher, the other user will decrypt it 
using the algorithm called DeCipher (Cipher) which is described 
below.
Step 6: Finally, this Byte-Code is again transformed into the user 
data and/or application data and the eavesdropper is left with the 
Cipher-Text, which can take him computationally infeasible time 
to decrypt using the most efficient Brute-Force attack running on 
even most powerful processor/s.

C. Performance Study of Above Mentioned Algorithm: 

1. Secure byte code conversion with Diffie-Hellman 
Key:

(i). SecureByteConversion (Byte code)
Step 1: Count the no of digits as length of the byte code of the 
real text message.
Step 2: a) If the length of the byte code is smaller than half the 
length (in digits) of the Diffie-Hellman key then go to Step 4. 
b) Else if the length of the byte code is larger than the Diffie 
Hellman Key size then (Normally it is likely to be so, considering 
that the text message itself is not smaller than sixty six characters 
against a 512 bit Diffie-Hellman Key), then break it into segments 
of same size as the Diffie Hellman Key. For each such segment 
of the byte code perform the task defined in step 3.
c) Otherwise, go to step6.
Step 3: We keep on adding digit by digit of the byte code of the 
message to the corresponding digit of the Diffie-Hellman Key 
until all the digits of the key are spent and at the same time, we 
take modulo of each addition with the help of table 1 which shows 
the modulo10 chart for addition.
Repeat this step for all same sized segments until the final segment, 
which may be smaller or equal to the length (in digits) of the Diffie-
Hellman key, is encountered. When it happens, go to step 5.

Step 4: Set Counter = 0.

Call rsa_encrypt (Byte coded message)
/*rsa_encrypt will return an integer which is equal to the original 
byte coded integer being moderated using modular residue 
calculation method by RSA public modulus n after it has already 
been raised public exponent e times to its own power.[cipher= 
m^e mod n] */
Check to see if the size of the integer (length in no. of digits) 
becomes more than half of the length of the Diffie-Hellman 
Key.
a) If it is so then concatenate five times more numbers of zeroes as 
the value of counter at the end of the code and return to Step2.
b) Increment Counter by 1 and repeat Step 4.

Step 5: Cut segment of same size as that of the byte code comprising 
consecutive digits from the Diffie-Hellman Key and then add it 
with the code using addition modulo ten arithmetic provided in 
Table 1.

Table 1: Addition modulo 10

(J) 
(I)
 0        1      2      3       4      5     6     7      8      9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

X ij= I + J mod 10; where 0<= I, J<=0.
E.g., X00 = 0+0 mod 10 = 0 and X87 = 8+7 mod 10 = 5.

Step 6:  Keep on taking addition modulo 10 for all digits appearing 
in the final segment with Diffie-Hellman key until the final digit 
of the byte code is dealt with. 

(ii). DeCipher (Cipher)  
//This algorithm decrypts the cipher and gives the byte code of 
the original message.
Step 1: The cipher has to be treated digit by digit and for every 
single digit that we encounter in the cipher, we find corresponding 
digit in the Diffie-Hellman Key (abbreviated as Diffie key). Now 
Table1’s row index is searched to find the Diffie-Key digit. 
Step 2: The row in which the Diffie-key is found, that particular 
row is further searched to find the corresponding cipher digit in 
it. 
Step 3: Now we look up to the column index of the searched 
value found in previous step.
           This column value is the byte code of the message.

Step 4: Now check from the end if there are five or more number 
of consecutive zeroes at the end of the code as delimiter.
            If so, then count the number of zeroes and 
            Set delimiter = No of consecutive zeroes from the end 
of the code. 
            Set count = delimiter / 5.

Step 5: Call rsa_decrypt (code generated in the prev.step)
/*rsa_decrypt () gives c^d mod n where c stands for code generated 
in the previous step and d, n are private exponent and modulus 
respectively.*/
             Set Count=Count -1.
             Repeat Step 5 until Count=0.
Function   BigInteger generate_e (BigInteger p, BigInteger q, 
int bitsize)
        Step1:          Declare Variable (BigInteger Type) e, phi_pq
        Step2:          Set e = 0
        Step3:          Set phi_pq = q-1
        Step4:          Set phi_pq = phi_pq* (p-1)
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             Step5:          Set int i = 0 
             Step6:          do {
                                 Set e = (call BigInteger (bitsize, 0, new 
Random ())).setBit (0)
           /*setBit () is used to set one bit to a bit string at the specified 
position with the specified bit value. New Random () gives a 
random number and it creates a new random number generator. 
Its seed is initialized to a value based on the current time*/
                                 Set i = i + 1
                                  } Repeat Step6 while (i<100 && gcd (e, 
phi_pq)! =1)
             /* we hope to find e with in 100 attempts. In each attempt 
we try with different random BigInteger variable.*/
            Step7:             return e  

Function gcd (int x) 
      It returns greatest common divisor among the instance variable 
e, that it has been called upon and the variable x.
      The workings of this algorithm are well known and therefore 
needs no further description.
Function BigInteger calculate_d (BigInteger p, BigInteger q, 
BigInteger e) 
This algorithm takes input as two large prime numbers p and q 
and the public exponent e of RSA and returns the private exponent 
d of RSA which is multiplicative inverse of e under the group of 
multiplication modulo n [23]where n = (p-1)*(q-1).
Step 1:  Declare BigInteger d, phi_pq
Step2:  Set phi_pq = q-1
Step3:  Set phi_pq = phi_pq * (p-1)
Step4:  Set d = e.modInverse (phi_pq)   //e.modInverse (m) returns 
(e-1 mod m).

Step5:  return d
Function BigInteger rsa_encrypt (BigInteger msg, BigInteger e, 
BigInteger n): 
Step1:  Declare BigInteger c, bitmask
Step2:  Set c = 0   //big integer type
Step3:  Set int i = 0
Step4:  Set bitmask = (2) ^ (n.bitLength ()-1)-1)
Step5:  while (msg.compareTo (bitmask) == 1) {
            Set c = msg.and (bitmask).modPow (e, n).shiftLeft (i*n.
bitLength ()) |c
            Set msg = msg.shiftRight (n.bitLength ()-1)
            Set i = i+1
           }

Step6:  Set c = msg.modPow (e, n).shiftLeft (i*n.bitLength ()).
or(c)
Step7:  return c	

Function     BigInteger rsa_decrypt (BigInteger crypt, BigInteger 
d, BigInteger n) 
Step1: Declare Big Integer msg, bitmask
Step2: Set msg = new BigInteger (“0”)
Step3: Set int i = 0
Step4: Set bitmask = ((2) ^ (bitLength of n))-1
Step5: while (crypt.compareTo (bitmask) == 1) { 
/*The well-known function compareTo () returns less than zero 
if the invoking object is lesser than the object that passed as the 
argument according to the Dictionary order of the constituent 
letters of the string objects.*/
		

Set msg = crypt.and (bitmask).modPow (d, n).shift Left (i*(n.
bitLength ()-1)).or (msg)
/*and () does the bit wise and operation; modPow (d, n), if invoked 
on x, returns x^d mod n
x.or(y) gives the bit wise OR value of x and y.*/
Set crypt = crypt.shiftRight (n.bitLength ()) //shifting n bits to 
the right hand side.
Set i = i+1
}

Step 6: Set msg = crypt.modPow (d, n). shiftLeft (i*(bit length 
of n-1)).or(msg)
//x.or(y) gives the bit wise OR value of x and y.

Step 7: return msg

IV. Conclusion
Using this algorithm we can encrypt and decrypt user and/or 
application data very easily and the simplicity of this algorithm 
is the soul of this algorithm though it creates combinational 
complexity for a eavesdropper to decrypt the cipher-text but for end 
users this algorithm never poses any complex functional activity 
to perform. Without knowing the Diffie-Hellman Key decryption 
of the cipher in this system is analyzed further more. Finding one 
digit of the actual byte code means finding one specific addend and 
augends for a specific number ranging from zero to up to nine in the 
Addition modulo ten arithmetic (see Table1). Now, as it appears in 
Table 1 that any single digit from zero to up to nine may have ten 
different combination of different Addend and Augend.Therefore 
probability of finding one such specific digit is 0.1 and for n such 
digits this probability will be 1/(10)n . It should be noted that n is 
the size of the byte code of the message. For smaller sized data 
segment it is even more difficult because remember for smaller 
sized data we used RSA encryption first and on top of that we 
employed SecureByteConversion (Byte code) algorithm (see Step 
2 of the SecureByteConversion algorithm). The most beneficiary 
part of it is that two different set of keys (one Diffie-Hellman key 
set and the other RSA key set) are used to encrypt the data/byte 
stream, which in other words makes life uncomfortable for a 
hacker to decrypt the cipher text. The hacker has to try all sort of 
combination of the RSA and Diffie-Hellman key to find the exact 
combination for the specific transmission. Moreover, as we did 
not disclose the Public Components of Diffie-Hellman Part (i.e. 
generator and the prime modulus) the eavesdropper must have 
to break the RSA first to only find them and then have to counter 
to find Diffie-Hellman Secret key.
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