The Rectangular Microstrip Patch Antenna for 14GHz

Kavitha H.D.

Dept. of Physics, Govt. Science College, Hassan, Karnataka, India

Abstract
In this work we have designed an Antenna for 14GHz in Ku Band using Rectangular Microstrip Patch Antenna. The antenna structure resonated ku band with bandwidth 450 impedance bandwidth. The impedance bandwidth 3.28% achieved. The proposed structure is having good impedance matching. Rectangular Microstrip Patch Antenna can easily configured for most complex multiband characteristics. Antennas which can work properly in more than one frequency region either for transmitting or receiving electromagnetic (EM) waves. The proposed antenna resonated at 14GHz of ku band and we have achieved 4.06dBi of average gain.

Keywords
Rectangular Microstrip Patch Antenna, bandwidth enhancement, Ku band

I. Introduction
Antennas can be used for dual-band, tri-band, penta-band applications. Multi-band antennas are much more complex than the single band antennas in their design, structures and operations. Perturbation of ground surface is named as Defected Ground Surface for slots on ground plane. Rectangular Microstrip Patch Antenna is designed by embedding suitable slots on the ground plane as DGS (Defected ground Structure). Monopole antennas can easily configured for most complex multiband characteristics. Antennas which can work properly in more than one frequency region either for transmitting or receiving electromagnetic (EM) waves, are termed as Multi-band antennas [1].

II. Antenna Design
The antenna is fabricated on substrate of FR4 epoxy with relative permittivity $\varepsilon_r = 4.4$ and the thickness of 1.6mm. The Length and width of the radiating patch and ground plane are calculated using the formulas given in [1], for the resonant frequency of 14GHz.

III. Simulated Results
Simulated s_{11} can be seen from fig. 2 refrection co-efficient is very less at resonance return loss of the antenna is less than 10dB from 13.85GHz to 14.3GHz which is 450MHz. Impedance match of this antenna can be seen in fig. 3, this clearly illustrating that the frequency of the interest is very near to point 1.

The radiation pattern of the proposed antenna showing the Gain total at different frequencies is shown in fig. 4. Gain total at 14 is 4.06dBi
The important property of any antenna is VSWR in our proposed antenna we have achieved VSWR < 2 over the operating frequency. This can be seen in fig. 5

![Fig. 5: VSWR of Proposed Antenna](image)

IV. Conclusion

In this design we used effectively designed the Rectangular Printed monopole. It has bandwidth of 450MHz, average gain of 4.06dBi.

V. Acknowledgement

We thank to Vision Group on Science & Technology, Karnataka Science and Technology Promotion Society (KSTePS), Dept. of Information Technology, Biotechnology and Science & Technology, GoK for supporting this work under Seed Money to Young Scientist for Research (VGST/ P3/SMYSR/GRD-288/2013-14)

References