
IJECT Vol. 8, Issue 1, Jan - March 2017

w w w . i j e c t . o r g International Journal of Electronics & Communication Technology   9

 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

Design of Low Power L2 Cache Using Multistep
Tag Comparison Method

1Abilash.V, 2Chidambaram.S
1,2Dept. of ECE, Adhiyamaan College of Engineering, Hosur, TN, India

Abstract
Tag comparison in a highly associative cache consumes a significant
portion of the cache energy. Existing methods for tag comparison
reduction are based on predicting either cache hits or cache misses.
In this project, we propose novel ideas for both cache hit and miss
predictions. In this method, a partial tag-enhanced Bloom filter is
used to improve the accuracy of the cache miss prediction method
and hot/cold checks that control data liveness to reduce the tag
comparisons of the cache hit prediction method. This approach
combine both methods so that their order of application can be
dynamically adjusted to adapt to changing cache access behavior,
which further reduces tag comparisons. To overcome the common
limitation of multistep tag comparison methods , a new method
proposed that reduces tag comparisons while meeting the given
performance bound.

Keywords
Cache, Bloom filter, Tag Comparison, Multistep.

I. Introduction
Cache memory is usually part of the central processing unit, or
part of a complex that includes the CPU and an adjacent chipset
where memory is used to hold data and instructions that are most
frequently accessed by an executing program - usually from RAM-
based memory locations.CPU cache memory operates between 10
to 100 times faster than RAM, requiring only a few nanoseconds
to respond to the CPU request. RAM cache, of course, is much
speedier in its response time than magnetic media, which delivers
I/O at rates measured in milliseconds.

A CPU cache places a small amount of memory directly on the
CPU. This memory is much faster than the system RAM because
it operates at the CPU’s speed rather than the system bus speed.
The idea behind the cache is that chip makers assume that if data
has been requested once, there’s a good chance it will be requested
again. Placing the data on the cache makes it accessible faster.
Same tag bits are used to improve error protection capability of
the tag bits in the caches. When an error is detected in the tag
bits, the same tag bit information is used to recover from the error
in the tag bits.

II. Related Works
Hyunsun Park et al [1] discussed that the tag comparison in a
highly associative cache consumes a significant portion of the
cache energy. Existing methods for tag comparison reduction
are based on predicting either cache hits or cache misses.In
this paper, a novel idea is presented for both cache hit and miss
predictions. A partial tag enhanced Bloom filter to improve the
accuracy of the cache miss prediction method and hot/cold checks
that control data liveliness to reduce the tag comparisons of the
cache hit prediction method. Also combined both methods so that
their order of application can be dynamically adjusted to adapt
to changing cache access behavior, which further reduces tag
comparisons.With the trend of increasing transient error rate, it

is becoming important to prevent transient errors and provide a
correction mechanism for hardware circuits, especially for SRAM
cache memories. Caches are the largest structures in current
microprocessors and, hence, are most vulnerable to the transient
errors. Tag bits in cache memories are also exposed to transient
errors but a few efforts have been made to reduce their vulnerability
which has been proposed by Jeongkyu Hong et al [2].A new cache
architecture proposed by Jianwei Dai et al [3] referred to as way
tagged cache to improve the energy efficiency of write-through
caches. By maintaining the way tags of L2 cache in the L1 cache
during read operations, the proposed technique enables L2 cache
to work in an equivalent direct-mapping manner during write hits,
which account for the majority of L2 cache accesses.Soontae
Kim et al [4] proposed a concept in which increasing concern
about various errors, current processors adopt error protection
mechanisms for their on-chip components. Especially, protecting
caches in current processors incurs as much as 12.5 percent area
overhead due to error-correcting codes (ECCs). Considering large
L2/L3 caches employed in current high-performance processors,
the area overhead is very high, consuming a large number of on-
chip transistors. As an attempt to reduce that overhead, this paper
proposes an area-efficient error protection architecture for large
L2/L3 caches.Koustav Bhattacharya et al [5] discussed with the
continuous decrease in the minimum feature size and increase
in the chip density due to technology scaling, on-chip L2 caches
are becoming increasingly susceptible to multi-bit soft errors.
The increase in multi-bit errors could lead to higher risk of data
corruption and potentially result in the crashing of application
programs.

Traditionally, the L2 caches have been protected from soft errors
using techniques such as:

Error detection/correction codes;1.	
Physical interleaving of cache bit lines to convert multi-bit 2.	
errors into single-bit errors;
Cache scrubbing.3.	

While the first two methods incur large area overheads for multi-
bit errors, identifying the time interval for scrubbing could be
tricky.

III. Same Tag Information
Exploiting prevalent same tag bits to improve error protection
capability of the tag bits in the caches. When data are fetched
from the main memory, it is checked if adjacent cache lines have
the same tag bits as those of the data fetched.This same tag bit
information is stored in the caches as extra bits to be used later.

When an error is detected in the tag bits, the same tag bit information
is used to recover from the error in the tag bits.Before accessing
data from main memory to CPU it is stored in the cache memory
for the processing waiting as required. During the storage in the
cache memory the data can be misplaced in the corresponding
address. This misplacement is known as Transient Error. Main
challenges are:

IJECT Vol. 8, Issue 1, Jan - March 2017 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

w w w . i j e c t . o r g 10 International Journal of Electronics & Communication Technology

Lowering transient error in the cache memory.•	
Reduced power consumption.•	
Minimum area.•	
Minimized delay.•	

IV. Counting Bloom Filter (CBF)
A Counting Bloom filter is a space-efficient probabilistic data
structure, conceived by Burton Howard Bloom in 1970, that is
used to test whether an element is a member of a set. False positive
matches are possible, but false negatives are not, thus a Bloom
filter has a 100% recall rate. In other words, a query returns either
“possibly in set” or “definitely not in set”. Elements can be added
to the set, but not removed (though this can be addressed with a
“counting” filter). The more elements that are added to the set,
the larger the probability of false positives.
Bloom proposed the technique for applications where the amount
of source data would require an impractically large amount of
memory if “conventional” error-free hashing techniques were
applied. He gave the example of a hyphenation algorithm for a
dictionary of 500,000 words, out of which 90% follow simple
hyphenation rules, but the remaining 10% require expensive disk
accesses to retrieve specific hyphenation patterns. With sufficient
core memory, an error-free hash could be used to eliminate all
unnecessary disk accesses; on the other hand, with limited core
memory, Bloom’s technique uses a smaller hash area but still
eliminates most unnecessary accesses. For example, a hash area
only 15% of the size needed by an ideal error-free hash still
eliminates 85% of the disk accesses, an 85–15 form of the Pareto
principle (Bloom (1970)).

Bloom filter used to speed up answers in a key-value storage
system.Values are stored on a disk which has slow access times.
Bloom filter decisions are much faster. However some unnecessary
disk accesses are made when the filter reports a positive (in order
to weed out the false positives). Overall answer speed is better
with the Bloom filter than without the Bloom filter. Use of a bloom
filter reduces the power comparatively.The components of Bloom
filter are probe,increment and decrement.

Fig. 1: Schematic Representation of CBF

The schematic representation of CBF is shown in Fig. 1. A CBF
is conceptually an array of counts indexed via a hash function
of the element under membership test [5]. A CBF has three
operations:

Increment count (INC);1.	
Decrement count (DEC); and2.	
Test if the count is zero (PROBE).3.	

The first two operations increment or decrement the corresponding
count by one, and the third one checks if the count is zero and
returns true or false (Single-bit output).
We would refer to the first two operations as updates and to the
third one as a probe. A CBF is characterized by its number of
entries and the width of the count per entry.

The CBF is capable of producing the desired answer to a
membership test much faster and saves power on two conditions.
First, accessing the CBF is significantly faster and requires much
less energy than accessing the large set. Second, most membership
tests are serviced by the CBF.

V. Hash Function Structure
An example of a Bloom filter, representing the set { x, y, z }. The
top arrows show the positions in the bit array that each set element
is mapped to. The element wise not in the set { x, y, z }, because
it hashes to one bit-array position containing 0. For this structure
shown in fig. 2, m = 18 and k = 3.

Fig. 2 : Hash Function Structure

An empty Bloom filter is a bit array of m bits, all set to 0. There
must also be k different hash functions defined, each of which
maps or hashes some set element to one of the m array positions
with a uniform random distribution. To add an element, feed it to
each of the k hash functions to get k array positions. Set the bits
at all these positions to 1.To query for an element (test whether it
is in the set), feed it to each ofthe k hash functions to get k array
positions. If any of the bits at these positions is 0, the element
is definitely not in the set – if it were, then all the bits would
have been set to 1 when it was inserted. If all are 1, then either
the element is in the set, or the bits have by chance been set to 1
during the insertion of other elements, resulting in a false positive.
In a simple Bloom filter, there is no way to distinguish between
the two cases, but more advanced techniques can address this
problem.Removing an element from this simple Bloom filter is
impossible because false negatives are not permitted.
An element maps to k bits, and although setting any one of those
k bits to zero suffices to remove the element, it also results in
removing any other elements that happen to map onto that bit.
Since there is no way of determining whether any other elements
have been added that affect the bits for an element to be removed,
clearing any of the bits would introduce the possibility for false
negatives.
One-time removal of an element from a Bloom filter can be
simulated by having a second Bloom filter that contains items
that have been removed.However, false positives in the second
filter become false negatives in the composite filter, which may
be undesirable. In this approach re-adding a previously removed
item is not possible, as one would have to remove it from the
“removed” filter. It is often the case that all the keys are available
but are expensive to enumerate (for example, requiring many disk
reads). When the false positive rate gets too high, the filter can be
regenerated; this should be a relatively rare event.

VI. Partial Tag Bloom Filter(pBF)
In a Counting Bloom filter, the component ‘Prob’ will mention as
“True Positive”, “False Negative” and “False Positive”. In which
true positive means data is present and false negative means data
is not present.

IJECT Vol. 8, Issue 1, Jan - March 2017

w w w . i j e c t . o r g International Journal of Electronics & Communication Technology   11

 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

“False Positive” is the multi detected address denotation, which
simply means “data can be considered. The probability of the
occurrence of a false positive need to be reduced to increase the
energy gain enabled by the Bloom filter. In this work, it is aimed to
reduce the probability of a false positive by equipping the Bloom
filter with partial tags.

VII. Data Liveness Aware Tag Comparison
At time t1, a cache line is first referenced after being fetched
from the main memory. During the period from t1 to t2, there
are frequent accesses to the cache line. We call such a period a
hot period. We also call the cache line in a hot period a hot cache
line. During the period from t2 to t3, there is no access, and the
cache line is evicted at time t3. During such a cold period, the
cache line is called a cold cache line.

VIII. Dynamic Multistep Tag Comparison
In this proposed method, tag comparison in a highly associative
cache consumes a significant portion of the cache energy. In
existing methods for tag comparison reduction are based on
predicting either cache hits or cache misses. A novel ideas for
both cache hit and miss predictions are obtained.

This method of dynamic multistep tag comparison combines both
cache hit prediction (hot and cold cache line checks) and cache
miss prediction (partial tag enhanced Bloom filter) methods. A
partial tag enhanced Bloom filter (pBF) is presented to improve
the accuracy of the cache miss prediction method and hot/cold
checks that control data liveliness to reduce the tag comparisons
of the cache hit prediction method. We also combine both methods
so that their order of application can be dynamically adjusted to
adapt to changing cache access behavior, which further reduces
tag comparisons. To overcome the common limitation of multistep
tag comparison methods, it is proposed by a method that reduces
tag comparisons while meeting the given performance bound.
It is dynamic because it dynamically adjusts the order of tag
comparison steps to maximize the efficiency of each of the cache
hit and miss prediction methods.

Fig. 3 : Configuration of Multistep Comparison at Low or Medium
Hot Cache Hit

At low or medium hot hit rates, as Fig. 3, shows when applying a
partial tag-enhanced Bloom Filter (pBF) first because the number
of cache accesses filtered by the Bloom filter (= #total accesses
× cache miss rate × cache miss prediction accuracy) increases as
the hot hit rate decreases (i.e., cache miss rate increases). This
reduces tag comparisons otherwise required only to give cache
misses as the results while wasting energy.

Fig. 4 : Configuration of Multistep Comparison at High Hot Cache
Hit

At high hot hit rates, as Fig. 4 shows, the hot line check is performed
before the partial tag-enhanced Bloom filter check. This order is
adopted because the hot line check is more likely to give cache
hits, which allows both subsequent Bloom filter checks and tag
comparisons for cold lines to be skipped thereby reducing energy
consumption.

IX. Results and Discussion
The simulation result of L2 cache with counting Bloom filter
method and dynamic multistep tag comparison method is obtained
with XILINX ISE 14.1 using VHDL language. The area, delay
and power consumed have been reported in Table 1.

Table 1: Simulation Results
Simulation
Parameters

Counting Bloom
Filter Method

Dynamic Multistep Tag
Comparison Method

Area 71299
(Gate Count)

35656
(Gate Count)

Power
Consumed 675 mW 194 mW

Delay 8.732 ns 4.073 ns

X. Conclusion
We summarized the multistep tag comparison method to reduce
the energy consumed in tag comparison within highly associative
L2 caches. We presented a partial tag-enhanced Bloom filter to
improve the accuracy of cache miss prediction. We also explained
hot/cold checks (with dynamic timeout tracking) as a cache hit
prediction method. To further reduce tag comparisons, we presented

IJECT Vol. 8, Issue 1, Jan - March 2017 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

w w w . i j e c t . o r g 12 International Journal of Electronics & Communication Technology

a partial tag comparison that takes place during cold checks. When
data are fetched from the main memory, it is checked if adjacent
cache lines have the same tag bits as those of the data fetched.
The modification done by using Counting Bloom Filter (CBF)
scheme, which makes output only with comparatively reduced
power.The estimated area and delay is not much reduced.The
simulation result shows that there is a significant improvement
in terms of area , power and time delay of dynamic multistep tag
comparison method.

References
[1]	 Hyunsun Park, Sungjoo Yoo, Sunggu Lee,“A Multistep Tag

Comparison Method for a Low-Power L2 Cache,” IEEE
Transactions on Computer-Aided Design Of Integrated
Circuits and Systems, Vol. 31, No. 4, April 2015.

[2]	 Jeongkyu Hong, Jesung Kim, Soontae Kim,“Exploiting Same
Tag Bits to Improve the Reliability of the Cache Memories,”
IEEE Transactions On Very Large Scale Integration (VLSI)
Systems, Vol. 23, No. 2, February 2015.

[3]	 Jianwei Dai, Lei Wang,“An Energy-Efficient L2 Cache
Architecture Using Way Tag Information Under Write-
Through Policy,” IEEE Transactions On Very Large Scale
Integration (VLSI) Systems, Vol. 21, No. 1, January 2013.

[4]	 Soontae Kim,“Reducing Area Overhead for Error-Protecting
Large L2/L3 Caches,” IEEE Transactions On Computers,
Vol. 58, No. 3, March 2009.

[5]	 Koustav Bhattacharya, Nagarajan Ranganathan, Soontae
Kim,“A Framework for Correction of Multi-Bit Soft Errors
in L2 Caches Based on Redundancy,” IEEE Transactions On
Very Large Scale Integration (VLSI) Systems, Vol. 17, No.
2, February 2009.

[6]	 Zhigang Hu, Stefanos Kaxiras, Margaret Martonosi,
“Timekeeping in the Memory System: Predicting and
Optimizing Memory Behavior,” IEEE Transactions on
Dependable and Secure Computing, Vol. 3, No. 3, July-
September 2006.

[7]	 Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman,
Dean M. Tullsen, Norman P. Jouppi,“McPAT: An Integrated
Power, Area, and Timing Modeling Framework for Multicore
and Manycore Architectures,” IEEE Transactions On
Computers, Vol. 54, No. 12, December 2005.

[8]	 Wei Zhang,“Replication Cache: A Small Fully Associative
Cache to Improve Data Cache Reliability,” IEEE Transactions
On Computers, Vol. 54, No. 12, November 2005.

[9]	 Patrick J. Meaney, Scott B. S., Pia N. Sanda, Lisa
Spainhower,“IBM z990 Soft Error Detection and Recovery”
IEEE Transactions on Device and Materials Reliability, Vol.
5, No. 3, September 2005.

[10]	Charles W. Slayman,“Cache and Memory Error Detection,
Correction, and Reduction Techniques for Terrestrial Servers
and Workstations”, IEEE Transactions on Device and
Materials Reliability, Vol. 5, No. 3, September 2005.

V.Abilash is pursuing M.E in VLSI
Design in the Department of Electronics
and Communication Engineering at
Adhiyamaan College of Engineering,
India. He received his B.E degree
in Electronics and Communication
Engineering from Anna University,
India in 2015. His research interests
are in the domain of VLSI signal
processing, Image processing and
Embedded Systems.

S.Chidambaram is working as
Associate Professor in the Department
of Electronics and Communication
Engineering at Adhiyamaan College of
Engineering, India, where he leads the
Image and Signal Processing Lab. He
received his B.E degree in Electronics
and Communication Engineering from
Bharathidasan University, India in
2002, M.E degree in Power Electronics
and Drives from Anna University, India
in 2005 and currently he is working

toward his Ph.D in the domain of hyperspectral Image Processing.
His research interests lie in the field of Digital Signal Processing,
Hyperspectral Image processing, Satellite Image Processing such
as enhancement, classification and compression algorithms,
Statistical Signal Processing, Sparse Representations. He is a
member of IEEE and ISTE.

