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Abstract
Tag comparison in a highly associative cache consumes a significant 
portion of the cache energy. Existing methods for tag comparison 
reduction are based on predicting either cache hits or cache misses. 
In this project, we propose novel ideas for both cache hit and miss 
predictions. In this method, a partial tag-enhanced Bloom filter is 
used to improve the accuracy of the cache miss prediction method 
and hot/cold checks that control data liveness to reduce the tag 
comparisons of the cache hit prediction method. This approach 
combine both methods so that their order of application can be 
dynamically adjusted to adapt to changing cache access behavior, 
which further reduces tag comparisons. To overcome the common 
limitation of multistep tag comparison methods , a new method 
proposed that reduces tag comparisons while meeting the given 
performance bound. 

Keywords
Cache, Bloom filter, Tag Comparison, Multistep.

I. Introduction
Cache memory is usually part of the central processing unit, or 
part of a complex that includes the CPU and an adjacent chipset 
where memory is used to hold data and instructions that are most 
frequently accessed by an executing program - usually from RAM-
based memory locations.CPU cache memory operates between 10 
to 100 times faster than RAM, requiring only a few nanoseconds 
to respond to the CPU request. RAM cache, of course, is much 
speedier in its response time than magnetic media, which delivers 
I/O at rates measured in milliseconds.

A CPU cache places a small amount of memory directly on the 
CPU. This memory is much faster than the system RAM because 
it operates at the CPU’s speed rather than the system bus speed. 
The idea behind the cache is that chip makers assume that if data 
has been requested once, there’s a good chance it will be requested 
again. Placing the data on the cache makes it accessible faster. 
Same tag bits are used to improve error protection capability of 
the tag bits in the caches. When an error is detected in the tag 
bits, the same tag bit information is used to recover from the error 
in the tag bits.

II. Related Works
Hyunsun Park et al [1] discussed that the tag comparison in a 
highly associative cache consumes a significant portion of the 
cache energy. Existing methods for tag comparison reduction 
are based on predicting either cache hits or cache misses.In 
this paper, a novel idea is presented for both cache hit and miss 
predictions. A partial tag enhanced Bloom filter to improve the 
accuracy of the cache miss prediction method and hot/cold checks 
that control data liveliness to reduce the tag comparisons of the 
cache hit prediction method. Also combined both methods so that 
their order of application can be dynamically adjusted to adapt 
to changing cache access behavior, which further reduces tag 
comparisons.With the trend of increasing transient error rate, it 

is becoming important to prevent transient errors and provide a 
correction mechanism for hardware circuits, especially for SRAM 
cache memories. Caches are the largest structures in current 
microprocessors and, hence, are most vulnerable to the transient 
errors. Tag bits in cache memories are also exposed to transient 
errors but a few efforts have been made to reduce their vulnerability 
which has been proposed by Jeongkyu Hong et al [2].A new cache 
architecture proposed by Jianwei Dai et al [3] referred to as way 
tagged cache to improve the energy efficiency of write-through 
caches. By maintaining the way tags of L2 cache in the L1 cache 
during read operations, the proposed technique enables L2 cache 
to work in an equivalent direct-mapping manner during write hits, 
which account for the majority of L2 cache accesses.Soontae 
Kim et al [4] proposed a concept in which increasing concern 
about various errors, current processors adopt error protection 
mechanisms for their on-chip components. Especially, protecting 
caches in current processors incurs as much as 12.5 percent area 
overhead due to error-correcting codes (ECCs). Considering large 
L2/L3 caches employed in current high-performance processors, 
the area overhead is very high, consuming a large number of on-
chip transistors. As an attempt to reduce that overhead, this paper 
proposes an area-efficient error protection architecture for large 
L2/L3 caches.Koustav Bhattacharya et al [5] discussed with the 
continuous decrease in the minimum feature size and increase 
in the chip density due to technology scaling, on-chip L2 caches 
are becoming increasingly susceptible to multi-bit soft errors. 
The increase in multi-bit errors could lead to higher risk of data 
corruption and potentially result in the crashing of application 
programs.

Traditionally, the L2 caches have been protected from soft errors 
using techniques such as:

Error detection/correction codes;1.	
Physical interleaving of cache bit lines to convert multi-bit 2.	
errors into single-bit errors; 
Cache scrubbing.3.	

While the first two methods incur large area overheads for multi-
bit errors, identifying the time interval for scrubbing could be 
tricky.

III. Same Tag Information
Exploiting prevalent same tag bits to improve error protection 
capability of the tag bits in the caches. When data are fetched 
from the main memory, it is checked if adjacent cache lines have 
the same tag bits as those of the data fetched.This same tag bit 
information is stored in the caches as extra bits to be used later.

When an error is detected in the tag bits, the same tag bit information 
is used to recover from the error in the tag bits.Before accessing 
data from main memory to CPU it is stored in the cache memory 
for the processing waiting as required. During the storage in the 
cache memory the data can be misplaced in the corresponding 
address. This misplacement is known as Transient Error. Main 
challenges are:
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Lowering transient error in the cache memory.•	
Reduced power consumption.•	
Minimum area.•	
Minimized delay.•	

IV. Counting Bloom Filter (CBF)
A Counting Bloom filter is a space-efficient probabilistic data 
structure, conceived by Burton Howard Bloom in 1970, that is 
used to test whether an element is a member of a set. False positive 
matches are possible, but false negatives are not, thus a Bloom 
filter has a 100% recall rate. In other words, a query returns either 
“possibly in set” or “definitely not in set”. Elements can be added 
to the set, but not removed (though this can be addressed with a 
“counting” filter). The more elements that are added to the set, 
the larger the probability of false positives.
Bloom proposed the technique for applications where the amount 
of source data would require an impractically large amount of 
memory if “conventional” error-free hashing techniques were 
applied. He gave the example of a hyphenation algorithm for a 
dictionary of 500,000 words, out of which 90% follow simple 
hyphenation rules, but the remaining 10% require expensive disk 
accesses to retrieve specific hyphenation patterns. With sufficient 
core memory, an error-free hash could be used to eliminate all 
unnecessary disk accesses; on the other hand, with limited core 
memory, Bloom’s technique uses a smaller hash area but still 
eliminates most unnecessary accesses. For example, a hash area 
only 15% of the size needed by an ideal error-free hash still 
eliminates 85% of the disk accesses, an 85–15 form of the Pareto 
principle (Bloom (1970)).

Bloom filter used to speed up answers in a key-value storage 
system.Values are stored on a disk which has slow access times. 
Bloom filter decisions are much faster. However some unnecessary 
disk accesses are made when the filter reports a positive (in order 
to weed out the false positives). Overall answer speed is better 
with the Bloom filter than without the Bloom filter. Use of a bloom 
filter reduces the power comparatively.The components of Bloom 
filter are probe,increment and decrement.

Fig. 1: Schematic Representation of CBF

The schematic representation of CBF is shown in Fig. 1. A CBF 
is conceptually an array of counts indexed via a hash function 
of the element under membership test [5]. A CBF has three 
operations:

Increment count (INC);1.	
Decrement count (DEC); and2.	
Test if the count is zero (PROBE).3.	

The first two operations increment or decrement the corresponding 
count by one, and the third one checks if the count is zero and 
returns true or false (Single-bit output).
We would refer to the first two operations as updates and to the 
third one as a probe. A CBF is characterized by its number of 
entries and the width of the count per entry.

The CBF is capable of producing the desired answer to a 
membership test much faster and saves power on two conditions. 
First, accessing the CBF is significantly faster and requires much 
less energy than accessing the large set. Second, most membership 
tests are serviced by the CBF.

V. Hash Function Structure
An example of a Bloom filter, representing the set { x, y, z }. The 
top arrows show the positions in the bit array that each set element 
is mapped to. The element wise not in the set { x, y, z }, because 
it hashes to one bit-array position containing 0. For this structure 
shown in fig. 2, m = 18 and k = 3.

Fig. 2 : Hash Function Structure

An empty Bloom filter is a bit array of m bits, all set to 0. There 
must also be k different hash functions defined, each of which 
maps or hashes some set element to one of the m array positions 
with a uniform random distribution. To add an element, feed it to 
each of the k hash functions to get k array positions. Set the bits 
at all these positions to 1.To query for an element (test whether it 
is in the set), feed it to each ofthe k hash functions to get k array 
positions. If any of the bits at these positions is 0, the element 
is definitely not in the set – if it were, then all the bits would 
have been set to 1 when it was inserted. If all are 1, then either 
the element is in the set, or the bits have by chance been set to 1 
during the insertion of other elements, resulting in a false positive. 
In a simple Bloom filter, there is no way to distinguish between 
the two cases, but more advanced techniques can address this 
problem.Removing an element from this simple Bloom filter is 
impossible because false negatives are not permitted. 
An element maps to k bits, and although setting any one of those 
k bits to zero suffices to remove the element, it also results in 
removing any other elements that happen to map onto that bit. 
Since there is no way of determining whether any other elements 
have been added that affect the bits for an element to be removed, 
clearing any of the bits would introduce the possibility for false 
negatives.
One-time removal of an element from a Bloom filter can be 
simulated by having a second Bloom filter that contains items 
that have been removed.However, false positives in the second 
filter become false negatives in the composite filter, which may 
be undesirable. In this approach re-adding a previously removed 
item is not possible, as one would have to remove it from the 
“removed” filter. It is often the case that all the keys are available 
but are expensive to enumerate (for example, requiring many disk 
reads). When the false positive rate gets too high, the filter can be 
regenerated; this should be a relatively rare event.

VI. Partial Tag Bloom Filter(pBF)
In a Counting Bloom filter, the component ‘Prob’ will mention as 
“True Positive”, “False Negative” and “False Positive”. In which 
true positive means data is present and false negative means data 
is not present.
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“False Positive” is the multi detected address denotation, which 
simply means “data can be considered. The probability of the 
occurrence of a false positive need to be reduced to increase the 
energy gain enabled by the Bloom filter. In this work, it is aimed to 
reduce the probability of a false positive by equipping the Bloom 
filter with partial tags.

VII. Data Liveness Aware Tag Comparison
At time t1, a cache line is first referenced after being fetched 
from the main memory. During the period from t1 to t2, there 
are frequent accesses to the cache line. We call such a period a 
hot period. We also call the cache line in a hot period a hot cache 
line. During the period from t2 to t3, there is no access, and the 
cache line is evicted at time t3. During such a cold period, the 
cache line is called a cold cache line.

VIII. Dynamic Multistep Tag Comparison
In this proposed method, tag comparison in a highly associative 
cache consumes a significant portion of the cache energy. In 
existing methods for tag comparison reduction are based on 
predicting either cache hits or cache misses. A novel ideas for 
both cache hit and miss predictions are obtained.

This method of dynamic multistep tag comparison combines both 
cache hit prediction (hot and cold cache line checks) and cache 
miss prediction (partial tag enhanced Bloom filter) methods. A 
partial tag enhanced Bloom filter (pBF) is presented to improve 
the accuracy of the cache miss prediction method and hot/cold 
checks that control data liveliness to reduce the tag comparisons 
of the cache hit prediction method. We also combine both methods 
so that their order of application can be dynamically adjusted to 
adapt to changing cache access behavior, which further reduces 
tag comparisons. To overcome the common limitation of multistep 
tag comparison methods, it is proposed by a method that reduces 
tag comparisons while meeting the given performance bound. 
It is dynamic because it dynamically adjusts the order of tag 
comparison steps to maximize the efficiency of each of the cache 
hit and miss prediction methods.

Fig. 3 : Configuration of Multistep Comparison at Low or Medium 
Hot Cache Hit

At low or medium hot hit rates, as Fig. 3, shows when applying a 
partial tag-enhanced Bloom Filter (pBF) first because the number 
of cache accesses filtered by the Bloom filter (= #total accesses 
× cache miss rate × cache miss prediction accuracy) increases as 
the hot hit rate decreases (i.e., cache miss rate increases). This 
reduces tag comparisons otherwise required only to give cache 
misses as the results while wasting energy.

Fig. 4 : Configuration of Multistep Comparison at High Hot Cache 
Hit

At high hot hit rates, as Fig. 4 shows, the hot line check is performed 
before the partial tag-enhanced Bloom filter check. This order is 
adopted because the hot line check is more likely to give cache 
hits, which allows both subsequent Bloom filter checks and tag 
comparisons for cold lines to be skipped thereby reducing energy 
consumption.

IX. Results and Discussion
The simulation result of L2 cache with counting Bloom filter 
method and dynamic multistep tag comparison method is obtained 
with XILINX ISE 14.1 using VHDL language. The area, delay 
and power consumed have been reported in Table 1. 

Table 1: Simulation Results  
Simulation 
Parameters

Counting Bloom 
Filter Method

Dynamic Multistep Tag 
Comparison Method

Area 71299
(Gate Count)

35656
(Gate Count)

Power 
Consumed 675 mW 194 mW

Delay 8.732 ns 4.073 ns

X. Conclusion  
We summarized the multistep tag comparison method to reduce 
the energy consumed in tag comparison within highly associative 
L2 caches. We presented a partial tag-enhanced Bloom filter to 
improve the accuracy of cache miss prediction. We also explained 
hot/cold checks (with dynamic timeout tracking) as a cache hit 
prediction method. To further reduce tag comparisons, we presented 
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a partial tag comparison that takes place during cold checks. When 
data are fetched from the main memory, it is checked if adjacent 
cache lines have the same tag bits as those of the data fetched. 
The modification done by using Counting Bloom Filter (CBF) 
scheme, which makes output only with comparatively reduced 
power.The estimated area and delay is not much reduced.The 
simulation result shows that there is a significant improvement 
in terms of  area , power and time delay of dynamic multistep tag 
comparison method. 
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