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Abstract
The promise of data-driven decision-making is now being 
recognized broadly, and there is growing enthusiasm for the 
notion of ``Big Data.’’ While the promise of Big Data is real 
-- for example, it is estimated that Google alone contributed 54 
billion dollars to the US economy in 2009 -- there is currently a 
wide gap between its potential and its realization. 
Heterogeneity, scale, timeliness, complexity, and privacy problems 
with Big Data impede progress at all phases of the pipeline that can 
create value from data. The problems start right away during data 
acquisition, when the data tsunami requires us to make decisions, 
currently in an ad hoc manner, about what data to keep and what 
to discard, and how to store what we keep reliably with the right 
metadata. Much data today is not natively in structured format; 
for example, tweets and blogs are weakly structured pieces of text, 
while images and video are structured for storage and display, but 
not for semantic content and search: transforming such content 
into a structured format for later analysis is a major challenge. 
The value of data explodes when it can be linked with other 
data, thus data integration is a major creator of value. Since most 
data is directly generated in digital format today, we have the 
opportunity and the challenge both to influence the creation to 
facilitate later linkage and to automatically link previously created 
data. Data analysis, organization, retrieval, and modeling are other 
foundational challenges. Data analysis is a clear bottleneck in 
many applications, both due to lack of scalability of the underlying 
algorithms and due to the complexity of the data that needs to be 
analyzed. Finally, presentation of the results and its interpretation 
by non-technical domain experts is crucial to extracting actionable 
knowledge. 
During the last 35 years, data management principles such as 
physical and logical independence, declarative querying and cost-
based optimization have led, during the last 35 years, to a multi-
billion dollar industry. More importantly, these technical advances 
have enabled the first round of business intelligence applications 
and laid the foundation for managing and analyzing Big Data 
today. The many novel challenges and opportunities associated 
with Big Data necessitate rethinking many aspects of these data 
management platforms, while retaining other desirable aspects. 
We believe that appropriate investment in Big Data will lead to 
a new wave of fundamental technological advances that will be 
embodied in the next generations of Big Data management and 
analysis platforms, products, and systems. 
We believe that these research problems are not only timely, but 
also have the potential to create huge economic value in the US 
economy for years to come. However, they are also hard, requiring 
us to rethink data analysis systems in fundamental ways. A major 
investment in Big Data, properly directed, can result not only in 
major scientific advances, but also lay the foundation for the next 
generation of advances in science, medicine, and business.
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I. Introduction 
We are awash in a flood of data today. In a broad range of application 
areas, data is being collected at unprecedented scale. Decisions 
that previously were based on guesswork, or on painstakingly 
constructed models of reality, can now be made based on the data 
itself. Such Big Data analysis now drives nearly every aspect of our 
modern society, including mobile services, retail, manufacturing, 
financial services, life sciences, and physical sciences. 
Scientific research has been revolutionized by Big Data 
[CCC2011a]. The Sloan Digital Sky Survey [SDSS2008] has 
today become a central resource for astronomers the world over. 
The field of Astronomy is being transformed from one where 
taking pictures of the sky was a large part of an astronomer’s job 
to one where the pictures are all in a database already and the 
astronomer’s task is to find interesting objects and phenomena 
in the database. In the biological sciences, there is now a well-
established tradition of depositing scientific data into a public 
repository, and also of creating public databases for use by other 
scientists. In fact, there is an entire discipline of bioinformatics 
that is largely devoted to the curation and analysis of such data. 
As technology advances, particularly with the advent of Next 
Generation Sequencing, the size and number of experimental data 
sets available is increasing exponentially. 
Big Data has the potential to revolutionize not just research, 
but also education [CCC2011b]. A recent detailed quantitative 
comparison of different approaches taken by 35 charter schools 
in NYC has found that one of the top five policies correlated with 
measurable academic effectiveness was the use of data to guide 
instruction [DF2011]. Imagine a world in which we have access 
to a huge database where we collect every detailed measure of 
every student's academic performance. This data could be used to 
design the most effective approaches to education, starting from 
reading, writing, and math, to advanced, college-level, courses. 
We are far from having access to such data, but there are powerful 
trends in this direction. In particular, there is a strong trend for 
massive Web deployment of educational activities, and this will 
generate an increasingly large amount of detailed data about 
students' performance. 
It is widely believed that the use of information technology 
can reduce the cost of healthcare while improving its quality 
[CCC2011c], by making care more preventive and personalized 
and basing it on more extensive (home-based) continuous 
monitoring. McKinsey estimates [McK2011] a savings of 300 
billion dollars every year in the US alone. 
In a similar vein, there have been persuasive cases made for the 
value of Big Data for urban planning (through fusion of high-
fidelity geographical data), intelligent transportation (through 
analysis and visualization of live and detailed road network data), 
environmental modeling (through sensor networks ubiquitously 
collecting data) [CCC2011d], energy saving (through unveiling 
patterns of use), smart materials (through the new materials 
genome initiative [MGI2011]), computational social sciences
(a new methodology fast growing in popularity because of 
the dramatically lowered cost of obtaining data) [LP+2009], 
financial systemic risk analysis (through integrated analysis of a 
web of contracts to find dependencies between financial entities) 
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[FJ+2011], homeland security (through analysis of social networks 
and financial transactions of possible terrorists), computer security 
(through analysis of logged information and other events, known 
as Security Information and Event Management (SIEM)), and 
so on. 
In 2010, enterprises and users stored more than 13 exabytes of 
new data; this is over 50,000 times the data in the Library of 
Congress. The potential value of global personal location data is 
estimated to be $700 billion to end users, and it can result in an 
up to 50% decrease in product development and assembly costs, 
according to a recent McKinsey report [McK2011]. McKinsey 
predicts an equally great effect of Big Data in employment, where 
140,000-190,000 workers with “deep analytical” experience will 
be needed in the US; furthermore, 1.5 million managers will need 
to become data-literate. Not surprisingly, the recent PCAST report 
on Networking and IT R&D [PCAST2010] identified Big Data as 
a “research frontier” that can “accelerate progress across a broad 
range of priorities.” Even popular news media now appreciates 
the value of Big Data as evidenced by coverage in the Economist 
[Eco2011], the New York Times [NYT2012], and National Public 
Radio [NPR2011a, NPR2011b]. 
While the potential benefits of Big Data are real and significant, 
and some initial successes have already been achieved (such 
as the Sloan Digital Sky Survey), there remain many technical 
challenges that must be addressed to fully realize this potential. 
The sheer size of the data, of course, is a major challenge, and 
is the one that is most easily recognized. However, there are 
others. Industry analysis companies like to point out that there 
are challenges not just in Volume, but also in Variety and Velocity 
[Gar2011], and that companies should not focus on just the first 
of these. By Variety, they usually mean heterogeneity of data 
types, representation, and semantic interpretation. By Velocity, 
they mean both the rate at which data arrive and the time in which 
it must be acted upon. While these three are important, this short 
list fails to include additional important requirements such as 
privacy and usability. 
The analysis of Big Data involves multiple distinct phases as 
shown in the figure below, each of which introduces challenges. 
Many people unfortunately focus just on the analysis/modeling 
phase: while that phase is crucial, it is of little use without the other 
phases of the data analysis pipeline. Even in the analysis phase, 
which has received much attention, there are poorly understood 
complexities in the context of multi-tenanted clusters where several 
users’ programs run concurrently. Many significant challenges 
extend beyond the analysis phase. For example, Big Data has to 
be managed in context, which may be noisy, heterogeneous and 
not include an upfront model. Doing so raises the need to track 
provenance and to handle uncertainty and error: topics that are 
crucial to success, and yet rarely mentioned in the same breath 
as Big Data. Similarly, the questions to the data analysis pipeline 
will typically not all be laid out in advance. We may need to figure 
out good questions based on the data. Doing this will require 
smarter systems and also better support for user interaction with 
the analysis pipeline. In fact, we currently have a major bottleneck 
in the number of people empowered to ask questions of the data 
and analyze it [NYT2012]. We can drastically increase this number 
by supporting many levels of engagement with the data, not all 
requiring deep database expertise. Solutions to problems such as 
this will not come from incremental improvements to business as 
usual such as industry may make on its own. Rather, they require 
us to fundamentally rethink how we manage data analysis

Fig. 1: The Big Data Analysis Pipeline. Major Steps in analysis 
of big Data are shown in the flow at top. Below it are big data 
neds that make these takes challenging

Fortunately, existing computational techniques can be applied, 
either as is or with some extensions, to at least some aspects of the 
Big Data problem. For example, relational databases rely on the 
notion of logical data independence: users can think about what 
they want to compute, while the system (with skilled engineers 
designing those systems) determines how to compute it efficiently. 
Similarly, the SQL standard and the relational data model provide 
a uniform, powerful language to express many query needs and, in 
principle, allows customers to choose between vendors, increasing 
competition. The challenge ahead of us is to combine these healthy 
features of prior systems as we devise novel solutions to the many 
new challenges of Big Data. 
In this paper, we consider each of the boxes in the figure above, and 
discuss both what has already been done and what challenges remain 
as we seek to exploit Big Data. We begin by considering
the five stages in the pipeline, then move on to the five cross-cutting 
challenges, and end with a discussion of the architecture of the 
overall system that combines all these functions.

II. Phases in the Processing Pipeline 

A. Data Acquisition and Recording 
Big Data does not arise out of a vacuum: it is recorded from 
some data generating source. For example, consider our ability 
to sense and observe the world around us, from the heart rate of 
an elderly citizen, and presence of toxins in the air we breathe, to 
the planned square kilometer array telescope, which will produce 
up to 1 million terabytes of raw data per day. Similarly, scientific 
experiments and simulations can easily produce petabytes of data 
today. 
Much of this data is of no interest, and it can be filtered and 
compressed by orders of magnitude. One challenge is to define these 
filters in such a way that they do not discard useful information. 
For example, suppose one sensor reading differs substantially 
from the rest: it is likely to be due to the sensor being faulty, 
but how can we be sure that it is not an artifact that deserves 
attention? In addition, the data collected by these sensors most 
often are spatially and temporally correlated (e.g., traffic sensors 
on the same road segment). We need research in the science of 
data reduction that can intelligently process this raw data to a 
size that its users can handle while not missing the needle in the 
haystack. Furthermore, we require “on-line” analysis techniques 
that can process such streaming data on the fly, since we cannot 



IJECT Vol. 7, Issue 3, July - Sept 2016

w w w . i j e c t . o r g International Journal of Electronics & Communication Technology   109

 ISSN : 2230-7109 (Online)  |  ISSN : 2230-9543 (Print)

afford to store first and reduce afterward. 
The second big challenge is to automatically generate the 
right metadata to describe what data is recorded and how it is 
recorded and measured. For example, in scientific experiments, 
considerable detail regarding specific experimental conditions 
and procedures may be required to be able to interpret the results 
correctly, and it is important that such metadata be recorded with 
observational data. Metadata acquisition systems can minimize 
the human burden in recording metadata. Another important issue 
here is data provenance. Recording information about the data at 
its birth is not useful unless this information can be interpreted and 
carried along through the data analysis pipeline. For example, a 
processing error at one step can render subsequent analysis useless; 
with suitable provenance, we can easily identify all subsequent 
processing that dependent on this step. Thus we need research 
both into generating suitable metadata and into data systems that 
carry the provenance of data and its metadata through data analysis 
pipelines.

B. Information Extraction and Cleaning 
Frequently, the information collected will not be in a format ready 
for analysis. For example, consider the collection of electronic 
health records in a hospital, comprising transcribed dictations from 
several physicians, structured data from sensors and measurements 
(possibly with some associated uncertainty), and image data such 
as x-rays. We cannot leave the data in this form and still effectively 
analyze it. Rather we require an information extraction process that 
pulls out the required information from the underlying sources and 
expresses it in a structured form suitable for analysis. Doing this 
correctly and completely is a continuing technical challenge. Note 
that this data also includes images and will in the future include 
video; such extraction is often highly application dependent (e.g., 
what you want to pull out of an MRI is very different from what 
you would pull out of a picture of the stars, or a surveillance 
photo). In addition, due to the ubiquity of surveillance cameras 
and popularity of GPS-enabled mobile phones, cameras, and other 
portable devices, rich and high fidelity location and trajectory (i.e., 
movement in space) data can also be extracted. 
We are used to thinking of Big Data as always telling us the 
truth, but this is actually far from reality. For example, patients 
may choose to hide risky behavior and caregivers may sometimes 
mis-diagnose a condition; patients may also inaccurately recall 
the name of a drug or even that they ever took it, leading to 
missing information in (the history portion of) their medical 
record. Existing work on data cleaning assumes well-recognized 
constraints on valid data or well-understood error models; for 
many emerging Big Data domains these do not exist.

C. Data Integration, Aggregation, and Representation 
Given the heterogeneity of the flood of data, it is not enough 
merely to record it and throw it into a repository. Consider, for 
example, data from a range of scientific experiments. If we just 
have a bunch of data sets in a repository, it is unlikely anyone 
will ever be able to find, let alone reuse, any of this data. With 
adequate metadata, there is some hope, but even so, challenges 
will remain due to differences in experimental details and in data 
record structure. 
Data analysis is considerably more challenging than simply locating, 
identifying, understanding, and citing data. For effective large-
scale analysis all of this has to happen in a completely automated 
manner. This requires differences in data structure and semantics 
to be expressed in forms that are computer understandable, and 

then “robotically” resolvable. There is a strong body of work in 
data integration that can provide some of the answers. However, 
considerable additional work is required to achieve automated 
error-free difference resolution. 
Even for simpler analyses that depend on only one data set, 
there remains an important question of suitable database design. 
Usually, there will be many alternative ways in which to store 
the same information. Certain designs will have advantages over 
others for certain purposes, and possibly drawbacks for other 
purposes. Witness, for instance, the tremendous variety in the 
structure of bioinformatics databases with information regarding 
substantially similar entities, such as genes. Database design is 
today an art, and is carefully executed in the enterprise context 
by highly-paid professionals. We must enable other professionals, 
such as domain scientists, to create effective database designs, 
either through devising tools to assist them in the design process 
or through forgoing the design process completely and developing 
techniques so that databases can be used effectively in the absence 
of intelligent database design.

D. Query Processing, Data Modeling, and Analysis 
Methods for querying and mining Big Data are fundamentally 
different from traditional statistical analysis on small samples. 
Big Data is often noisy, dynamic, heterogeneous, inter-related and 
untrustworthy. Nevertheless, even noisy Big Data could be more 
valuable than tiny samples because general statistics obtained 
from frequent patterns and correlation analysis usually overpower 
individual fluctuations and often disclose more reliable hidden 
patterns and knowledge. Further, interconnected Big Data forms 
large heterogeneous information networks, with which information 
redundancy can be explored to compensate for missing data, to 
crosscheck conflicting cases, to validate trustworthy relationships, 
to disclose inherent clusters, and to uncover hidden relationships 
and models. 
Mining requires integrated, cleaned, trustworthy, and efficiently 
accessible data, declarative query and mining interfaces, scalable 
mining algorithms, and big-data computing environments. At the 
same time, data mining itself can also be used to help improve the 
quality and trustworthiness of the data, understand its semantics, 
and provide intelligent querying functions. As noted previously, 
real-life medical records have errors, are heterogeneous, and 
frequently are distributed across multiple systems. The value of Big 
Data analysis in health care, to take just one example application 
domain, can only be realized if it can be applied robustly under 
these difficult conditions. On the flip side, knowledge developed 
from data can help in correcting errors and removing ambiguity. 
For example, a physician may write “DVT” as the diagnosis for 
a patient. This abbreviation is commonly used for both “deep 
vein thrombosis” and “diverticulitis,” two very different medical 
conditions. A knowledge-base constructed from related data can 
use associated symptoms or medications to determine which of 
two the physician meant. 
Big Data is also enabling the next generation of interactive data 
analysis with real-time answers. In the future, queries towards 
Big Data will be automatically generated for content creation on 
websites, to populate hot-lists or recommendations, and to provide 
an ad hoc analysis of the value of a data set to decide whether to 
store or to discard it. Scaling complex query processing techniques 
to terabytes while enabling interactive response times is a major 
open research problem today. 
A problem with current Big Data analysis is the lack of coordination 
between database systems, which host the data and provide SQL 
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querying, with analytics packages that perform various forms of 
non-SQL processing, such as data mining and statistical analyses. 
Today’s analysts are impeded by a tedious process of exporting 
data from the database, performing a non-SQL process and 
bringing the data back. This is an obstacle to carrying over the 
interactive elegance of the first generation of SQL-driven OLAP 
systems into the data mining type of analysis that is in increasing 
demand. A tight coupling between declarative query languages and 
the functions of such packages will benefit both expressiveness 
and performance of the analysis.

E. Interpretation 
Having the ability to analyze Big Data is of limited value if users 
cannot understand the analysis. Ultimately, a decision-maker, 
provided with the result of analysis, has to interpret these results. 
This interpretation cannot happen in a vacuum. Usually, it involves 
examining all the assumptions made and retracing the analysis. 
Furthermore, as we saw above, there are many possible sources 
of error: computer systems can have bugs, models almost always 
have assumptions, and results can be based on erroneous data. For 
all of these reasons, no responsible user will cede authority to the 
computer system. Rather she will try to understand, and verify, the 
results produced by the computer. The computer system must make 
it easy for her to do so. This is particularly a challenge with Big Data 
due to its complexity. There are often crucial assumptions behind 
the data recorded. Analytical pipelines can often involve multiple 
steps, again with assumptions built in. The recent mortgage-related 
shock to the financial system dramatically underscored the need 
for such decision-maker diligence -- rather than accept the stated 
solvency of a financial institution at face value, a decision-maker 
has to examine critically the many assumptions at multiple stages 
of analysis. 
In short, it is rarely enough to provide just the results. Rather, 
one must provide supplementary information that explains how 
each result was derived, and based upon precisely what inputs. 
Such supplementary information is called the provenance of the 
(result) data. By studying how best to capture, store, and query 
provenance, in conjunction with techniques to capture adequate 
metadata, we can create an infrastructure to provide users with the 
ability both to interpret analytical results obtained and to repeat the 
analysis with different assumptions, parameters, or data sets. 
Systems with a rich palette of visualizations become important 
in conveying to the users the results of the queries in a way 
that is best understood in the particular domain. Whereas early 
business intelligence systems’ users were content with tabular 
presentations, today’s analysts need to pack and present results 
in powerful visualizations that assist interpretation, and support 
user collaboration as discussed in Sec. III.E. 
Furthermore, with a few clicks the user should be able to drill down 
into each piece of data that she sees and understand its provenance, 
which is a key feature to understanding the data. That is, users 
need to be able to see not just the results, but also understand 
why they are seeing those results. However, raw provenance, 
particularly regarding the phases in the analytics pipeline, is 
likely to be too technical for many users to grasp completely. 
One alternative is to enable the users to “play” with the steps in 
the analysis – make small changes to the pipeline, for example, 
or modify values for some parameters. The users can then view 
the results of these incremental changes. By these means, users 
can develop an intuitive feeling for the analysis and also verify 
that it performs as expected in corner cases. Accomplishing this 
requires the system to provide convenient facilities for the user 

to specify analyses. Declarative specification, discussed in Sec. 
IV, is one component of such a system. 

III. Challenges in Big Data Analysis 
Having described the multiple phases in the Big Data analysis 
pipeline, we now turn to some common challenges that underlie 
many, and sometimes all, of these phases. These are shown as 
five boxes in the second row of Fig. 1.

A. Heterogeneity and Incompleteness 
When humans consume information, a great deal of heterogeneity 
is comfortably tolerated. In fact, the nuance and richness of natural 
language can provide valuable depth. However, machine analysis 
algorithms expect homogeneous data, and cannot understand 
nuance. In consequence, data must be carefully structured as a 
first step in (or prior to) data analysis. Consider, for example, a 
patient who has multiple medical procedures at a hospital. We 
could create one record per medical procedure or laboratory test, 
one record for the entire hospital stay, or one record for all lifetime 
hospital interactions of this patient. With anything other than the 
first design, the number of medical procedures and lab tests per 
record would be different for each patient. The three design choices 
listed have successively less structure and, conversely, successively 
greater variety. Greater structure is likely to be required by many 
(traditional) data analysis systems. However, the less structured 
design is likely to be more effective for many purposes – for 
example questions relating to disease progression over time will 
require an expensive join operation with the first two designs, 
but can be avoided with the latter. However, computer systems 
work most efficiently if they can store multiple items that are all 
identical in size and structure. Efficient representation, access, and 
analysis of semi-structured data require further work. 
Consider an electronic health record database design that has 
fields for birth date, occupation, and blood type for each patient. 
What do we do if one or more of these pieces of information is not 
provided by a patient? Obviously, the health record is still placed 
in the database, but with the corresponding attribute values being 
set to NULL. A data analysis that looks to classify patients by, 
say, occupation, must take into account patients for which this 
information is not known. Worse, these patients with unknown 
occupations can be ignored in the analysis only if we have reason 
to believe that they are otherwise statistically similar to the patients 
with known occupation for the analysis performed. For example, 
if unemployed patients are more likely to hide their employment 
status, analysis results may be skewed in that it considers a more 
employed population mix than exists, and hence potentially one 
that has differences in occupation-related health-profiles. 
Even after data cleaning and error correction, some incompleteness 
and some errors in data are likely to remain. This incompleteness 
and these errors must be managed during data analysis. Doing this 
correctly is a challenge. Recent work on managing probabilistic 
data suggests one way to make progress. 
There is a fundamental shift underway now: data volume is scaling 
faster than compute resources, and CPU speeds are static. 
First, over the last five years the processor technology has made a 
dramatic shift - rather than processors doubling their clock cycle 
frequency every 18-24 months, now, due to power constraints, 
clock speeds have largely stalled and processors are being 
built with increasing numbers of cores. In the past, large data 
processing systems had to worry about parallelism across nodes 
in a cluster; now, one has to deal with parallelism within a single 
node. Unfortunately, parallel data processing techniques that were 
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applied in the past for processing data across nodes don’t directly 
apply for intra-node parallelism, since the architecture looks very 
different; for example, there are many more hardware resources 
such as processor caches and processor memory channels that 
are shared across cores in a single node. Furthermore, the move 
towards packing multiple sockets (each with 10s of cores) adds 
another level of complexity for intra-node parallelism. Finally, 
with predictions of “dark silicon”, namely that power consideration 
will likely in the future prohibit us from using all of the hardware 
in the system continuously, data processing systems will likely 
have to actively manage the power consumption of the processor. 
These unprecedented changes require us to rethink how we design, 
build and operate data processing components. 
The second dramatic shift that is underway is the move towards 
cloud computing, which now aggregates multiple disparate 
workloads with varying performance goals (e.g. interactive 
services demand that the data processing engine return back an 
answer within a fixed response time cap) into very large clusters. 
This level of sharing of resources on expensive and large clusters 
requires new ways of determining how to run and execute data 
processing jobs so that we can meet the goals of each workload 
cost-effectively, and to deal with system failures, which occur 
more frequently as we operate on larger and larger clusters (that 
are required to deal with the rapid growth in data volumes). 
This places a premium on declarative approaches to expressing 
programs, even those doing complex machine learning tasks, since 
global optimization across multiple users’ programs is necessary 
for good overall performance. Reliance on user-driven program 
optimizations is likely to lead to poor cluster utilization, since 
users are unaware of other users’ programs. System-driven holistic 
optimization requires programs to be sufficiently transparent, 
e.g., as in relational database systems, where declarative query 
languages are designed with this in mind. 
A third dramatic shift that is underway is the transformative change 
of the traditional I/O subsystem. For many decades, hard disk 
drives (HDDs) were used to store persistent data. HDDs had far 
slower random IO performance than sequential IO performance, 
and data processing engines formatted their data and designed their 
query processing methods to “work around” this limitation. But, 
HDDs are increasingly being replaced by solid state drives today, 
and other technologies such as Phase Change Memory are around 
the corner. These newer storage technologies do not have the same 
large spread in performance between the sequential and random 
I/O performance, which requires a rethinking of how we design 
storage subsystems for data processing systems. Implications of 
this changing storage subsystem potentially touch every aspect 
of data processing, including query processing algorithms, query 
scheduling, database design, concurrency control methods and 
recovery methods.

B. Timeliness 
The flip side of size is speed. The larger the data set to be processed, 
the longer it will take to analyze. The design of a system that 
effectively deals with size is likely also to result in a system that 
can process a given size of data set faster. However, it is not just 
this speed that is usually meant when one speaks of Velocity 
in the context of Big Data. Rather, there is an acquisition rate 
challenge as described in Sec. II A, and a timeliness challenge 
described next. 
There are many situations in which the result of the analysis is 
required immediately. For example, if a fraudulent credit card 
transaction is suspected, it should ideally be flagged before the 

transaction is completed – potentially preventing the transaction 
from taking place at all. Obviously, a full analysis of a user’s 
purchase history is not likely to be feasible in real-time. Rather, we 
need to develop partial results in advance so that a small amount 
of incremental computation with new data can be used to arrive 
at a quick determination. 
Given a large data set, it is often necessary to find elements in 
it that meet a specified criterion. In the course of data analysis, 
this sort of search is likely to occur repeatedly. Scanning the 
entire data set to find suitable elements is obviously impractical. 
Rather, index structures are created in advance to permit finding 
qualifying elements quickly. The problem is that each index 
structure is designed to support only some classes of criteria. 
With new analyses desired using Big Data, there are new types 
of criteria specified, and a need to devise new index structures to 
support such criteria. For example, consider a traffic management 
system with information regarding thousands of vehicles and 
local hot spots on roadways. The system may need to predict 
potential congestion points along a route chosen by a user, and 
suggest alternatives. Doing so requires evaluating multiple 
spatial proximity queries working with the trajectories of moving 
objects. New index structures are required to support such queries. 
Designing such structures becomes particularly challenging when 
the data volume is growing rapidly and the queries have tight 
response time limits. 

C. Privacy 
The privacy of data is another huge concern, and one that increases 
in the context of Big Data. For electronic health records, there 
are strict laws governing what can and cannot be done. For 
other data, regulations, particularly in the US, are less forceful. 
However, there is great public fear regarding the inappropriate 
use of personal data, particularly through linking of data from 
multiple sources. Managing privacy is effectively both a technical 
and a sociological problem, which must be addressed jointly from 
both perspectives to realize the promise of big data. Consider, 
for example, data gleaned from location-based services. These 
new architectures require a user to share his/her location with the 
service provider, resulting in obvious privacy concerns. Note that 
hiding the user’s identity alone without hiding her location would 
not properly address these privacy concerns. An attacker or a 
(potentially malicious) location-based server can infer the identity 
of the query source from its (subsequent) location information. 
For example, a user’s location information can be tracked through 
several stationary connection points (e.g., cell towers). After a 
while, the user 11 leaves “a trail of packet crumbs” which could be 
associated to a certain residence or office location and thereby used 
to determine the user’s identity. Several other types of surprisingly 
private information such as health issues (e.g., presence in a cancer 
treatment center) or religious preferences (e.g., presence in a 
church) can also be revealed by just observing anonymous users’ 
movement and usage pattern over time. In general, Barabási et al. 
showed that there is a close correlation between people’s identities 
and their movement patterns [Gon2008]. Note that hiding a user 
location is much more challenging than hiding his/her identity. 
This is because with location-based services, the location of the 
user is needed for a successful data access or data collection, while 
the identity of the user is not necessary. 
There are many additional challenging research problems. For 
example, we do not know yet how to share private data while 
limiting disclosure and ensuring sufficient data utility in the 
shared data. The existing paradigm of differential privacy is a 
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very important step in the right direction, but it unfortunately 
reduces information content too far in order to be useful in most 
practical cases. In addition, real data is not static but gets larger 
and changes over time; none of the prevailing techniques results in 
any useful content being released in this scenario. Yet another very 
important direction is to rethink security for information sharing 
in Big Data use cases. Many online services today require us to 
share private information (think of Facebook applications), but 
beyond record-level access control we do not understand what it 
means to share data, how the shared data can be linked, and how 
to give users fine-grained control over this sharing. 

D. Human Collaboration 
In spite of the tremendous advances made in computational 
analysis, there remain many patterns that humans can easily 
detect but computer algorithms have a hard time finding. Indeed, 
CAPTCHAs exploit precisely this fact to tell human web users 
apart from computer programs. Ideally, analytics for Big Data will 
not be all computational – rather it will be designed explicitly to 
have a human in the loop. The new sub-field of visual analytics 
is attempting to do this, at least with respect to the modeling and 
analysis phase in the pipeline. There is similar value to human 
input at all stages of the analysis pipeline. 
In today’s complex world, it often takes multiple experts from 
different domains to really understand what is going on. A Big Data 
analysis system must support input from multiple human experts, 
and shared exploration of results. These multiple experts may be 
separated in space and time when it is too expensive to assemble 
an entire team together in one room. The data system has to accept 
this distributed expert input, and support their collaboration. 
A popular new method of harnessing human ingenuity to solve 
problems is through crowd-sourcing. Wikipedia, the online 
encyclopedia, is perhaps the best known example of crowd-
sourced data. We are relying upon information provided by 
unvetted strangers. Most often, what they say is correct. However, 
we should expect there to be individuals who have other motives 
and abilities – some may have a reason to provide false information 
in an intentional attempt to mislead. While most

IV. System Architecture 
Companies today already use, and appreciate the value of, 
business intelligence. Business data is analyzed for many 
purposes: a company may perform system log analytics and 
social media analytics for risk assessment, customer retention, 
brand management, and so on. Typically, such varied tasks have 
been handled by separate systems, even if each system includes 
common steps of information extraction, data cleaning, relational-
like processing (joins, group-by, aggregation), statistical and 
predictive modeling, and appropriate exploration and visualization 
tools as shown in Fig. 1. 
With Big Data, the use of separate systems in this fashion becomes 
prohibitively expensive given the large size of the data sets. The 
expense is due not only to the cost of the systems themselves, but 
also the time to load the data into multiple systems. In consequence, 
Big Data has made it necessary to run heterogeneous workloads 
on a single infrastructure that is sufficiently flexible to handle all 
these workloads. The challenge here is not to build a system that 
is ideally suited for all processing tasks. Instead, the need is for 
the underlying system architecture to be flexible enough that the 
components built on top of it for expressing the various kinds 
of processing tasks can tune it to efficiently run these different 
workloads. The effects of scale on the physical architecture 

were considered in Sec III.B. In this section, we focus on the 
programmability requirements. 

If users are to compose and build complex analytical pipelines 
over Big Data, it is essential that they have appropriate high-level 
primitives to specify their needs in such flexible systems. The 
Map-Reduce framework has been tremendously valuable, but is 
only a first step. Even declarative languages that exploit it, such 
as Pig Latin, are at a rather low level when it comes to complex 
analysis tasks. Similar declarative specifications are required at 
higher levels to meet the programmability and composition needs 
of these analysis pipelines. Besides the basic technical need, there 
is a strong business imperative as well. Businesses typically will 
outsource Big Data processing, or many aspects of it. Declarative 
specifications are required to enable technically meaningful service 
level agreements, since the point of the out-sourcing is to specify 
precisely what task will be performed without going into details 
of how to do it. 

Declarative specification is needed not just for the pipeline 
composition, but also for the individual operations themselves. 
Each operation (cleaning, extraction, modeling etc.) potentially 
runs on a very large data set. Furthermore, each operation 
itself is sufficiently complex that there are many choices and 
optimizations possible in how it is implemented. In databases, 
there is considerable work on optimizing individual operations, 
such as joins. It is well-known that there can be multiple orders of 
magnitude difference in the cost of two different ways to execute 
the same query. Fortunately, the user does not have to make this 
choice – the database system makes it for her. In the case of 
Big Data, these optimizations may be more complex because 
not all operations will be I/O intensive as in databases. Some 
operations may be, but others may be CPU intensive, or a mix. So 
standard database optimization techniques cannot directly be used. 
However, it should be possible to develop new techniques for Big 
Data operations inspired by database techniques. The very fact that 
Big Data analysis typically involves multiple phases highlights a 
challenge that arises routinely in practice: production systems must 
run complex analytic pipelines, or workflows, at routine intervals, 
e.g., hourly or daily. New data must be incrementally accounted 
for, taking into account the results of prior analysis and pre-existing 
data. And of course, provenance must be preserved, and must 
include the phases in the analytic pipeline. Current systems offer 
little to no support for such Big Data pipelines, and this is in itself 
a challenging objective. 

V. Conclusion 
We have entered an era of Big Data. Through better analysis 
of the large volumes of data that are becoming available, there 
is the potential for making faster advances in many scientific 
disciplines and improving the profitability and success of many 
enterprises. However, many technical challenges described in 
this paper must be addressed before this potential can be realized 
fully. The challenges include not just the obvious issues of scale, 
but also heterogeneity, lack of structure, error-handling, privacy, 
timeliness, provenance, and visualization, at all stages of the 
analysis pipeline from data acquisition to result interpretation. 
These technical challenges are common across a large variety of 
application domains, and therefore not cost-effective to address 
in the context of one domain alone. Furthermore, these challenges 
will require transformative solutions, and will not be addressed 
naturally by the next generation of industrial products. We must 
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support and encourage fundamental research towards addressing 
these technical challenges if we are to achieve the promised 
benefits of Big Data.
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