
IJECT Vol. 7, Issue 2, April - June 2016 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

w w w . i j e c t . o r g 48 International Journal of Electronics & Communication Technology

Iris Recognition Using Canny Edge Detection
and Freeman Chain Code Algorithm

1Nitasha Singla, 2Amarjeet Kaur, 3Anjana Sharma
1,2,3Chandigarh Engineering College, Landran, Mohali, Punjab, India

Abstract
Circle detection is very important for many applications. Planets,
movement of planets, even cars, scooters, buses we would not be
able to drive because wheels are circle when we play sports, we
use balls- which are spheres, or three dimensional representations
of circles. So circle plays very important role in our life. In this
paper, we detect centre of iris using canny edge detection and
Freeman chain code algorithm.

Keywords
Iris, Canny edge detection algorithm, Freeman Chain Code

I. Introduction
As we know iris is circular in nature. Iris recognition system
mainly includes eye image capturing, image pre-processing
and edge detection through iris region segmentation, feature
extraction and pattern matching. Among them edge detection is
one of the major part in iris recognition system. Edge detection
technique detected pupil boundary detection accurately and
easier. A circular canny edge detection method is used to look for
a circle in the image which has maximum gray level difference
with its neighbor [1]. Circular hough transform uses different
approaches which are computationally complex [2]. In the
subsequent sections we are presenting the iris detection using
canny edge detection and freeman chain code algorithm.

II. Canny Edge Detection
There are various edge detection algorithms like: Sobel operator,
Priwitt’s operator, Robert’s cross operator and canny edge
detection algorithm. Canny edge detection algorithm is best
out of these because canny edge detection algorithm uses a
multi-stage process to detect a wide range of edges from the
images [3].
A. Convert Colored Image to Grayscale: There is no reason why
you could not do canny edge detection on a color image, but I
encourage you to first convert the image to grayscale using some
sort of RGB → Grayscale.

B. Image Smoothing
In this step noise is removed from the image using Gaussian filter.
Filtering is done using a simple mask, it is used exclusively in
the Canny algorithm. The Gaussian smoothing can be performed
using standard convolution methods. A convolution mask is
usually much smaller than the actual image. As a result, the
mask is slid over the image, manipulating a square of pixels at
a time. The larger the width of the Gaussian mask, the lower is
the detector’s sensitivity to noise. The localization error in the
detected edges also increases slightly as the Gaussian width is
increased. Image smoothing is done primarily to suppress noise
and to get a continuous edge contour during the non-maximum
suppression process. The output thus obtained is a blurred
intermediate image.

C. Compute Edge Strength and Direction of Edges

A. Edge Strength calculation
In this stage we use sobel’s operator. The Sobel operator is a
discrete differential operator that generates a gradient image.
Horizontal and vertical Sobel operators that are used to calculate
the horizontal and vertical gradients Dx and Dy, respectively, are
shown below:

-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1

To obtain the gradient image, a smoothened image from the
first stage is convolved with the horizontal and vertical Sobel
operators.
Rx = (I*Dx)					 (1)
Ry = (I*Dy) 		 (2)

In (1) and (2), I is the image obtained after Image smoothing; Rx
and Ry are images with pixel values that are the magnitude of the
horizontal and vertical gradient, respectively. Images Rx and Ry
from equations (1) and (2) are used in equation (3) to obtain the
“edge strength” of a pixel in an image. The edge strength is
R = √ Rx

2 + Ry
2					 (3)

B. Edge Direction Calculation:
Edge Direction is Determined Using this Formula:

B=tan-1(Ry/Rx)					 (4)

The edge directions obtained from equation (4) are rounded off to
one of four angles--0 degree, 45 degree, 90 degree or 135 degree-
-before using it in next step.

Fig. 1: Edge Directions are Rounded off to one of the Four Angles
to be Used in Step.

D. Non Maximum Suppression
In the last step the edges it finds can be either very thick or very
narrow depending on the intensity across the edge and how much
the image was blurred first. One would like to have edges that
are only one pixel wide. This step keeps only those pixels on an
edge with the highest edge strength [4].

IJECT Vol. 7, Issue 2, April - June 2016

w w w . i j e c t . o r g International Journal of Electronics & Communication Technology   49

 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

Three pixels in a 3 × 3 around pixel (x, y) are examined.
If A = 00, then the pixels (x + 1, y), (x, y), and (x − 1, y) are
examined.
If A= 900, then the pixels (x, y + 1), (x, y), and (x, y − 1) are
examined.
If A= 450, then the pixels (x + 1, y + 1), (x, y), and (x − 1, y − 1)
are examined.
If A= 1350, then the pixels (x + 1, y − 1), (x, y), and (x − 1, y +
1) are examined.
If pixel (x, y) has the highest edge strength of the three pixels
examined, it is kept as an edge otherwise should not be classified
as an edge pixel.

E. Hysteresis Thresholding
Thresholding with hysteresis is the last stage in canny edge
detection, which is used to eliminate spurious points and non-
edge pixels from the results of non-maximum suppression. Some
of the edges detected by Steps 1–3 will not actually be valid, but
will just be noise. We would like to filter this noise out.
Thus all the edges in an image are detected using the canny edge
detection Algorithm.

III. Freeman Chain Code Algorithm
After Non-maximum suppression and thresholding, we have thin
edges for all the possible object boundaries in the image. These
thin edges are contour traced to detect the potential circle’s edge
pixels. One of the well known algorithms for contour tracing is
Freeman Chain code [5].
This code is a list of codes ranging from 0 to 7 in clockwise direction
which represents the direction of the next pixel connected in 3*3
windows as shown in Table 1. The coordinate of the next pixel is
calculated based on the addition and subtraction of columns and
rows by 1, depending on the value of the code.

Table 1: Relation of Pixel and Chain Code with Current Pixel
Column-1 Column Column+1

Row-1 5 6 7

Row 4 Current
Pixel 0

Row+1 3 2 1

Table 2: Coordinates of Next Pixel Calculated Based on the Chain
Code for Current Pixel (x,y)

Code Next Row Next Column
0 x y
1 x + 1 y + 1
2 x + 1 y
3 x + 1 y – 1
4 x y – 1
5 x -1 y – 1
6 x – 1 y
7 x – 1 y +1

A. Finding Arcs by Contour Tracing
After the edge detection, linking algorithms are designed to
assemble edge pixels into meaningful edges and/or region
boundaries [5]. One of the simplest approach for linking the edge
points is to analyze the characteristics of the pixels in a small
neighborhood about every point (x,y) that has been declared an

edge point by using method that we have discussed earlier. All
the points that are similar according to predefined criteria are
linked, forming an edge of pixels that share common properties
according to the predefined criteria.
There are two principal properties to track the edges which form
the boundaries of the object. One is based on the edge strength
and other one is based on the pixel direction. Based on the
pixel direction, property states,“An edge pixel at (x0, y0) in the
predefined neighborhood of (x,y) has an angle similar to the pixel
at (x,y) if

│angle(x,y)-angle(x0-y0)│˂B			 (5)

Based on the Edge strength, property states, “An edge pixel at
(x0, y0) in the predefined neighborhood of (x,y) has an magnitude
similar to the pixel at (x,y) if

│magnitude(x,y) – magnitude(x0, y0)│ ˂ R		 (6)

Where R is the positive threshold and B is positive angle threshold.
Pixels are linked with each other if both magnitude and direction
criteria are satisfied.

The image is scanned to find a pixel with any pixel direction [5].
For example, let us consider that the pixel direction we are looking
for is located at (x,y) with the pixel direction 4, as shown in fig. 2.
Now we draw the normal perpendicular to the direction of pixel
under consideration that is 4. We examine pixel (x-1, y-1) and
(x+1, y+1) for larger gradient magnitude. From both these pixels,
which pixel has higher gradient that pixel is given higher priority
and second one is leave. So in the diagram pixel (x-1, y-1) has
higher gradient so it is given first priority. We know that pixel
(x-1, y+1) and (x+1, y-1) is discarded as, if these pixels had pixel
direction 4 then this would have been made zero during the NMS
stage. Now pixel (x, y-1) and (x-1, y) both have equal probability,
hence it will not matter which is given higher priority. Here we
are going to give pixel (x-1, y) second priority and pixel (x, y-1)
the third priority.

Fig. 2:

Hence, when (x,y) pixel is found having pixel direction 4, we
first check if pixel (x-1,y-1) has the same pixel direction. If yes,
then we update x to x-1 and y to y-1 and repeat the same process
till we find neighboring pixels with a pixel direction other than
4. We consider this arc only if the arc length is at least 10 pixels;
otherwise the arc is ignored and the scan for pixels with direction
4 is continued. This arc has angle in the range of 1960 - 2560.
Similarly, Contour tracing for pixel with direction 1, 2, 3, 5, 6,
7 or 8 is done. By doing this we get arcs at different-different
direction or we can say that in different angles.

IJECT Vol. 7, Issue 2, April - June 2016 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

w w w . i j e c t . o r g 50 International Journal of Electronics & Communication Technology

B. Arcs are to be part of circle or not
At the end of all these steps, Circle will looks like this as shown
below.

Fig. 2: Arcs of the Circle With Edge Directions

As we see that, circle consist of 4 major arc with pixel direction
2,4,6 and 8 with arc with pixel direction 1, 3, 5, and 7. Pixel
Direction 1, 3, 5 and 7 acts as a connector.
“The condition for considering the arc as part of a potential circle
is that there should be at least 3 arcs present with pixel directions
2, 4, 6 or 8 which are connected to each other by arcs with pixel
directions 3, 5, 7 or 1”.
To find circle we scan the image to find arc with pixel direction 2
or 8. Once the arc with pixel direction 2 is found, we again scan
the image at the end of the arc using the block of size 3*3, for a
pixel part of the arc with pixel direction 3, as shown in figure 2.
Similarly we repeat same process until we did not found 3 major
arcs. Once accurate arcs are find out they are draw on the circle
with blue color. By doing this, circle or we can say iris is detected
from the image.

IV. Result and Future Scope

A. Original Image

B. After Edge Detection

C. After Iris Detection

As in this paper, we detect iris which is circular in nature, by using
this method we can find different different circular objects. Even
we can differentiate between ‘O’ and ‘0’ by using this method.

References
[1]	 Daugman J,"How iris recognition works, Circuits and

Systems for Video Technology"? IEEE Transactions on, 14
21, 2004.

[2]	 Wildes R P,"Iris recognition: An emerging biometric
technology", Proceedings of the IEEE, 85 1348, 1997.

[3]	 R.C.Gonzalez, R. E. Woods,“Digital Image Processing”, 3rd
ed. Prentice Hall, 2009.

[4]	 B.Chanda, D.Dutta Majumder,“Digital Image Processing
and Analysis”, Prentice Hall 2003.

[5]	 Nitasha Singla, Reecha Sharma,"Extraction of circle
from digital images", International Journal of Computer
Applications & Information Technology, 2012.

[6]	 Bhawna Chouhan, Dr. (Mrs.) Shailja Shukla,“Iris
Recognition System using canny edge detection for Biometric
Identification”, International Journal of Engineering Science
and Technology (IJEST).

