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Abstract
The on-chip interconnection system known as Advanced 
Microcontroller Bus Architecture (AMBA) is a well established 
open specification for the proper management of functional blocks 
comprising system-on-chips (SOCs). In this subject paper, the 
design and implementation details of AMBA advanced high bus 
(AHB) with split/ retry transfer and without splitting are shown. 
The AHB design contains basic blocks such as master and slave 
and the working of these blocks are based on arbitration scheme. 
Multiplexer and Decoders are used to select the appropriate signals 
between masters and slaves that are involved in the transfer. The 
SPLIT and RETRY responses provide a mechanism for slaves to 
release the bus when they are unable to supply data for a transfer 
immediately. Both mechanisms allow the transfer to finish on the 
bus and therefore allow a higher-priority master to get access to 
the bus. The designing of AMBA (AHB) is done on QUESTASIM 
tool by verilog language.
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I. Introduction
 In recent days, the development of SOC chips and the reusable IP 
cores are given higher priority because of its less cost and reduction 
in the period of Time-to-market. So this enables the major and 
very sensitive issue such as interfacing of these IP cores. These 
interfaces play a vital role in SOC and should be taken care because 
of the communication between the IP cores property. There are 
many interconnect buses that are widely used in the industry like 
AMBA, Wishbone, Core Connect, Avalon etc. AMBA is most 
preferred among all of them because it has a hierarchy of buses 
like AHB(Advance high performance bus) that can be connected 
to high performance peripherals and APB (Advance Peripheral 
Bus) that can be connected to low performance peripherals.

II. Microcontroller Structure Based on AMBA-AHB
This type of microcontroller structure consists of High performance 
ARM processor, High bandwidth on-chip RAM, High bandwidth 
external memory, Direct memory access (DMA) device, Bridge as 
a converter , UART, Timer, Keypad, PIO and other devices based 
on application as shown in fig. 1. An AMBA based microcontroller 
typically consists of a high performance system backbone bus 
(AMBA-AHB), able to sustain the external memory bandwidth, 
on which the above given devices reside. This bus provides a 
high bandwidth interface between the elements that are involved 
in the majority of transfers. Also located on the high performance 
bus is a bridge to the lower bandwidth APB, where most of the 
peripheral devices in the system are located.

Fig. 1: AMBA Based Microcontroller

III. Advanced High Performance Bus (AHB) Protocol
The AHB is a high performance bus in AMBA (Advanced 
Microcontroller Bus Architecture) family. This AHB can be 
used in high clock frequency system modules. The AHB act as 
the high performance system backbone bus. It supports features 
such as:-

AHB is defined with a choice of several bus widths, from 1.	
8-bit to 1024-bit. The most common implementation has been 
32-bit, but higher bandwidth requirements may be satisfied 
by using 64 or 128-bit buses. 
AHB used the HRESP signals driven by the slaves to indicate 2.	
when an error has occurred. 
AHB also offers a large selection of verification IP from several 3.	
different suppliers. The solutions offered support several 
different languages and run in a choice of environments. 
AHB can be used at higher frequency along with separate data 4.	
buses that can be defined to 128-bit and above to achieve the 
bandwidth required for high-performance bus applications.
AHB can access other protocols through the proper bridging 5.	
converter. Hence it supports the bridge configuration for data 
transfer.

AHB offers burst capability by defining incrementing bursts of 
specified length.
It supports SEQ, NONSEQ, BUSY and IDLE transfers types. 
AHB also offers a fairly low cost (in area), low power (based on 
I/O) bus with a moderate amount of complexity and it can achieve 
higher frequencies.

IV. AHB Bus Interconnection
The AMBA AHB bus protocol is designed to be used with a 
central multiplexor interconnection scheme as shown in fig. 
2. Using this scheme all bus masters drive out the address and 
control signals indicating the transfer they wish to perform and 
the arbiter determines which master has its address and control 
signals routed to all of the slaves. A central decoder is also required 
to control the read data and response signal multiplexor, which 
selects the appropriate signals from the slave that is involved in 
the transfer
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Fig. 2: Bus Interconnection of AHB

V. Design of AMBA-AHB 
AMBA AHB uses HTRANS[1:0] signal whose width is 2-bit as 
a transfer type. This signal is driven by master who indicates the 
type of the current transfer happening. The IDLE transfer type is 
used when a bus master is granted the bus, but does not wish to 
perform a data transfer. Slaves must always provide a zero wait 
state OKAY response to IDLE transfers and the transfer should 
be ignored by the slave.
The BUSY transfer type allows bus masters to insert IDLE cycles 
in the middle of bursts of transfers. This transfer type indicates 
that the bus master is continuing with a burst of transfers, but the 
next transfer cannot take place immediately. Slaves must always 
provide a zero wait state OKAY response. The NONSEQ transfer 
type indicates the first transfer of a burst or a single transfer. The 
address and control signals are unrelated to the previous transfer. 
The remaining transfers in a burst are SEQUENTIAL and the 
address is related to the previous transfer. The control information 
is identical to the previous transfer. The address is equal to the 
address of the previous transfer plus the size (in bytes). In the 
case of a wrapping burst the address of the transfer wraps at the 
address boundary equal to the size (in bytes) multiplied by the 
number of beats in the transfer (either 4, 8 or 16). AMBA AHB 
uses HBURST[2:0] signal whose width is 3-bit. This signal is 
driven by master who indicates if the transfer forms part of a burst. 
Four, eight and sixteen-beat bursts are defined in the AMBA AHB 
protocol, as well as undefined-length bursts and single transfers. 
Both incrementing and wrapping bursts are supported in the 
protocol:
Incrementing bursts access sequential  locations and the address 
of each transfer in the burst is just an increment of the previous 
address. For wrapping bursts, if the start address of the transfer 
is not aligned to the total number of bytes in the burst (size x 
beats) then the address of the transfers in the burst will wrap 
when the boundary is reached. In this paper, only incrementing 
bursts(4, 8 and 16-bit) is shown. An incrementing burst can be of 
any length, but the upper limit is set by the fact that the address 
must not cross a 1kB boundary.

A. Slave transfer responses
After a master has started a transfer, the slave then determines 
how the transfer should progress. Whenever a slave is accessed it 
must provide a response which indicates the status of the transfer. 
The HREADY signal is used to extend the transfer and this works 
in combination with the response signals, HRESP[1:0], which 
provide the status of the transfer. The slave can complete the transfer 
in a number of ways. It can complete the transfer immediately, 
insert one or more wait states to allow time to complete the transfer, 
signal an error to indicate that the transfer has failed or delay the 
completion of the transfer, but allow the master and slave to back 
off the bus, leaving it available for other transfers.
Every slave must have a predetermined maximum number of 
wait states that it will insert before it backs off the bus, in order 
to allow the calculation of the latency of accessing the bus. It is 
recommended, but not mandatory, that slaves do not insert more 
than 16 wait states to prevent any single access locking the bus 
for a large number of clock cycles.
A typical slave will use the HREADY signal to insert the 
appropriate number of wait states into the transfer and then the 
transfer will complete with HREADY HIGH and OKAY response, 
which indicates the successful completion of the transfer. The 
ERROR response is used by a slave to indicate some form of error 
condition with the associated transfer. Typically this is used for a 
protection error, such as an attempt to write to a read-only memory 
location. The SPLIT and RETRY response combinations allow 
slaves to delay the completion of a transfer, but free up the bus 
for use by other masters. These response combinations are usually 
only required by slaves that have a high access latency and can 
make use of these response codes to ensure that other masters are 
not prevented from accessing the bus for long periods of time.

B. Address Decoding
A central address decoder is used to provide a select signal, HSELx, 
for each slave on the bus as shown in figure 3. The select signal is 
a combinatorial decode of the high-order address signals. A slave 
must only sample the address and control signals and HSELx 
when HREADY is HIGH, indicating that the current transfer is 
completing. Under certain condition, it is possible that HSELx 
will be asserted when HREADY is LOW, but the selected slave 
will have changed by the time the current transfer completes. If a 
NONSEQUENTIAL or SEQUENTIAL transfer is attempted to a 
non-existent address location then the default slave should provide 
an ERROR response. IDLE or BUSY transfers to nonexistent 
locations should result in a zero wait state OKAY response. 

C. Arbitration
The arbitration mechanism is used to ensure that only one master 
has access to the bus at any one time. The arbiter as shown in fig. 4 
performs this function by observing a number of different requests 
to use the bus and deciding which is currently the highest priority 
master requesting the bus. The arbiter also receives requests from 
slaves that wish to complete SPLIT transfers. Any slaves which 
are not capable of performing SPLIT transfers do not need to be 
aware of the arbitration process, except that they need to observe 
the fact that a burst of transfers may not complete if the ownership 
of the bus is changed.
A brief description of each of the arbitration signals is given 
below:
HBUSREQx, the bus request signal is used by a bus master to 
request access to the bus. HLOCKx, indicates to the arbiter that 
the master is performing a number of indivisible transfers and 
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the arbiter must not grant any other bus master access to the bus 
once the first transfer of the locked transfers has commenced. 
HGRANTx, the grant signal is generated by the arbiter and 
indicates that the appropriate master is currently the highest 
priority master requesting the bus, taking into account locked 
transfers and SPLIT transfers. A master gains ownership of the 
address bus when HGRANTx is HIGH and HREADY is HIGH 
at the rising edge of HCLK. Through HMASTER[3:0], the arbiter 
indicates which master is currently granted the bus. The arbiter 
indicates that the current transfer is part of a locked sequence by 
asserting the HMASTLOCK signal, which has the same timing 
as the address and control signals. HSPLIT[15:0], the 16-bit Split 
Complete bus is used by a SPLIT-capable slave to indicate which 
bus master can complete a SPLIT transaction. 

 
Fig. 4: AHB Arbiter

VI. Split Transfers
SPLIT transfers improve the overall utilization of the bus by 
separating (or splitting) the operation of the master providing 
the address to a slave from the operation of the slave responding 
with the appropriate data.
When a transfer occurs the slave can decide to issue a SPLIT 
response if it believes the transfer will take a large number of 
cycles to perform. This signals to the arbiter that the master which 
is attempting the transfer should not be granted access to the 
bus until the slave indicates it is ready to complete the transfer. 
Therefore the arbiter is responsible for observing the response 
signals and internally masking any requests from masters which 
have been SPLIT. During the address phase of a transfer the arbiter 
generates a tag, or bus master number, on HMASTER[3:0] which 
identifies the master that is performing the transfer. Any slave 
issuing a SPLIT response must be capable of indicating that it 
can complete the transfer, and it does this by making a note of 
the master number on the HMASTER[3:0] signals. Later, when 
the slave can complete the transfer, it asserts the appropriate bit, 
according to the master number, on the HSPLITx[15:0] signals 
from the slave to the arbiter. The arbiter then uses this information 
to unmask the request signal from the master and in due course 
the master will be granted access to the bus to retry the transfer. 
The arbiter samples the HSPLITx bus every cycle and therefore 
the slave only needs to assert the appropriate bit for a single cycle 
in order for the arbiter to recognize it. In a system with multiple 
SPLIT-capable slaves the HSPLITx buses from each slave can 
be ORed together to provide a single resultant HSPLIT bus to the 
arbiter. In the majority of systems the maximum capacity of 16 
bus masters will not be used and therefore the arbiter only requires 

an HSPLIT bus which has the same number of bits as there are 
bus masters. However, it is recommended that all SPLIT-capable 
slaves are designed to support up to 16 masters.

A. Split Transfer Sequence
The basic stages of a SPLIT transaction are:

The master starts the transfer in an identical way to any other 1.	
transfer and issues address and control information
If the slave is able to provide data immediately it may do so. 2.	
If the slave decides that it may take a number of cycles to 
obtain the data it gives a SPLIT transfer response. During 
every transfer the arbiter broadcasts a number, or tag, showing 
which master is using the bus. The slave must record this 
number, to use it to restart the transfer at a later time.
The arbiter grants other masters use of the bus and the action 3.	
of the SPLIT response allows bus master handover to occur. 
If all other masters have also received a SPLIT response then 
the default master is granted.
When the slave is ready to complete the transfer it asserts the 4.	
appropriate bit of the HSPLITx bus to the arbiter to indicate 
which master should be regranted access to the bus.
The arbiter observes the HSPLITx signals on every cycle, 5.	
and when any bit of HSPLITx is asserted the arbiter restores 
the priority of the appropriate master.
Eventually the arbiter will grant the master so it can re-6.	
attempt the transfer. This may not occur immediately if a 
higher priority master is using the bus.
When the transfer eventually takes place the slave finishes 7.	
with an OKAY transfer response.

VII. Results

Fig. 5: Complete data transfer cycles with splitting; with hclk 
as clock signal given to design and active low signal hrstn used 
to reset the system. Here master 2 is making request to transfer 
data. Busreq2=1.

 
Fig. 6: Extended Signals of Design HBUSREQ2=1 and 
HGRANT2=1
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Fig. 7: Complete Data Transfer Cycles Without Splitting. Here 
master1 and master2 are making requests busreq1 and busreq2 
with locked access to bus by using lock1 and lock2 signals.

Fig. 8: Extended Signals of Design Without Splitting

VIII. Conclusion
We have designed the intellectual properties of master and slave 
depending upon the design specification, data transfer and various 
transfer modes that are supported by AMBA bus architecture. 
The various scenarios for each component in the AMBA-AHB 
bus design are verified effectively during the simulation with 
respect to its specification. The main goal of this work is to 
study unique design feature of AMBA – AHB i.e. split transfers 
that has increased the bus bandwidth. The SPLIT and RETRY 
response combinations has allow slaves to delay the completion 
of a transfer, but free up the bus for use by other masters. These 
response combinations are usually only required by slaves that 
have high access latency and can make use of these response codes 
to ensure that other masters are not prevented from accessing the 
bus for long periods of time. SPLIT response tells the Arbiter to 
give priority to all other masters until the SPLIT transfer can be 
completed. A SPLIT response is more complicated to implement 
than a RETRY, but has the advantage that it allows the maximum 
efficiency to be made of the bus bandwidth.
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