
IJECT Vol. 7, Issue 2, April - June 2016

w w w . i j e c t . o r g International Journal of Electronics & Communication Technology   41

 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

Design and Implementation of Multiple - Master
Multiple-Slave AMBA AHB Protocol Block with
and Without Split/Retry Transfer for Advanced

Microcontroller in Verilog/VHDL
1Kajol Singh, 2Shefali Verma, 3Shobha Sharma

1,2,3Dept. of Electronics and Comm., Indira Gandhi Delhi Tech. Univ. for Women, New Delhi, India

Abstract
The on-chip interconnection system known as Advanced
Microcontroller Bus Architecture (AMBA) is a well established
open specification for the proper management of functional blocks
comprising system-on-chips (SOCs). In this subject paper, the
design and implementation details of AMBA advanced high bus
(AHB) with split/ retry transfer and without splitting are shown.
The AHB design contains basic blocks such as master and slave
and the working of these blocks are based on arbitration scheme.
Multiplexer and Decoders are used to select the appropriate signals
between masters and slaves that are involved in the transfer. The
SPLIT and RETRY responses provide a mechanism for slaves to
release the bus when they are unable to supply data for a transfer
immediately. Both mechanisms allow the transfer to finish on the
bus and therefore allow a higher-priority master to get access to
the bus. The designing of AMBA (AHB) is done on QUESTASIM
tool by verilog language.

Keywords
Advanced Microcontroller Bus Architecture (AMBA), Advanced
High Performance Bus (AHB), System-On-Chips (SOC).

I. Introduction
 In recent days, the development of SOC chips and the reusable IP
cores are given higher priority because of its less cost and reduction
in the period of Time-to-market. So this enables the major and
very sensitive issue such as interfacing of these IP cores. These
interfaces play a vital role in SOC and should be taken care because
of the communication between the IP cores property. There are
many interconnect buses that are widely used in the industry like
AMBA, Wishbone, Core Connect, Avalon etc. AMBA is most
preferred among all of them because it has a hierarchy of buses
like AHB(Advance high performance bus) that can be connected
to high performance peripherals and APB (Advance Peripheral
Bus) that can be connected to low performance peripherals.

II. Microcontroller Structure Based on AMBA-AHB
This type of microcontroller structure consists of High performance
ARM processor, High bandwidth on-chip RAM, High bandwidth
external memory, Direct memory access (DMA) device, Bridge as
a converter , UART, Timer, Keypad, PIO and other devices based
on application as shown in fig. 1. An AMBA based microcontroller
typically consists of a high performance system backbone bus
(AMBA-AHB), able to sustain the external memory bandwidth,
on which the above given devices reside. This bus provides a
high bandwidth interface between the elements that are involved
in the majority of transfers. Also located on the high performance
bus is a bridge to the lower bandwidth APB, where most of the
peripheral devices in the system are located.

Fig. 1: AMBA Based Microcontroller

III. Advanced High Performance Bus (AHB) Protocol
The AHB is a high performance bus in AMBA (Advanced
Microcontroller Bus Architecture) family. This AHB can be
used in high clock frequency system modules. The AHB act as
the high performance system backbone bus. It supports features
such as:-

AHB is defined with a choice of several bus widths, from 1.	
8-bit to 1024-bit. The most common implementation has been
32-bit, but higher bandwidth requirements may be satisfied
by using 64 or 128-bit buses.
AHB used the HRESP signals driven by the slaves to indicate 2.	
when an error has occurred.
AHB also offers a large selection of verification IP from several 3.	
different suppliers. The solutions offered support several
different languages and run in a choice of environments.
AHB can be used at higher frequency along with separate data 4.	
buses that can be defined to 128-bit and above to achieve the
bandwidth required for high-performance bus applications.
AHB can access other protocols through the proper bridging 5.	
converter. Hence it supports the bridge configuration for data
transfer.

AHB offers burst capability by defining incrementing bursts of
specified length.
It supports SEQ, NONSEQ, BUSY and IDLE transfers types.
AHB also offers a fairly low cost (in area), low power (based on
I/O) bus with a moderate amount of complexity and it can achieve
higher frequencies.

IV. AHB Bus Interconnection
The AMBA AHB bus protocol is designed to be used with a
central multiplexor interconnection scheme as shown in fig.
2. Using this scheme all bus masters drive out the address and
control signals indicating the transfer they wish to perform and
the arbiter determines which master has its address and control
signals routed to all of the slaves. A central decoder is also required
to control the read data and response signal multiplexor, which
selects the appropriate signals from the slave that is involved in
the transfer

IJECT Vol. 7, Issue 2, April - June 2016 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

w w w . i j e c t . o r g 42 International Journal of Electronics & Communication Technology

Fig. 2: Bus Interconnection of AHB

V. Design of AMBA-AHB
AMBA AHB uses HTRANS[1:0] signal whose width is 2-bit as
a transfer type. This signal is driven by master who indicates the
type of the current transfer happening. The IDLE transfer type is
used when a bus master is granted the bus, but does not wish to
perform a data transfer. Slaves must always provide a zero wait
state OKAY response to IDLE transfers and the transfer should
be ignored by the slave.
The BUSY transfer type allows bus masters to insert IDLE cycles
in the middle of bursts of transfers. This transfer type indicates
that the bus master is continuing with a burst of transfers, but the
next transfer cannot take place immediately. Slaves must always
provide a zero wait state OKAY response. The NONSEQ transfer
type indicates the first transfer of a burst or a single transfer. The
address and control signals are unrelated to the previous transfer.
The remaining transfers in a burst are SEQUENTIAL and the
address is related to the previous transfer. The control information
is identical to the previous transfer. The address is equal to the
address of the previous transfer plus the size (in bytes). In the
case of a wrapping burst the address of the transfer wraps at the
address boundary equal to the size (in bytes) multiplied by the
number of beats in the transfer (either 4, 8 or 16). AMBA AHB
uses HBURST[2:0] signal whose width is 3-bit. This signal is
driven by master who indicates if the transfer forms part of a burst.
Four, eight and sixteen-beat bursts are defined in the AMBA AHB
protocol, as well as undefined-length bursts and single transfers.
Both incrementing and wrapping bursts are supported in the
protocol:
Incrementing bursts access sequential locations and the address
of each transfer in the burst is just an increment of the previous
address. For wrapping bursts, if the start address of the transfer
is not aligned to the total number of bytes in the burst (size x
beats) then the address of the transfers in the burst will wrap
when the boundary is reached. In this paper, only incrementing
bursts(4, 8 and 16-bit) is shown. An incrementing burst can be of
any length, but the upper limit is set by the fact that the address
must not cross a 1kB boundary.

A. Slave transfer responses
After a master has started a transfer, the slave then determines
how the transfer should progress. Whenever a slave is accessed it
must provide a response which indicates the status of the transfer.
The HREADY signal is used to extend the transfer and this works
in combination with the response signals, HRESP[1:0], which
provide the status of the transfer. The slave can complete the transfer
in a number of ways. It can complete the transfer immediately,
insert one or more wait states to allow time to complete the transfer,
signal an error to indicate that the transfer has failed or delay the
completion of the transfer, but allow the master and slave to back
off the bus, leaving it available for other transfers.
Every slave must have a predetermined maximum number of
wait states that it will insert before it backs off the bus, in order
to allow the calculation of the latency of accessing the bus. It is
recommended, but not mandatory, that slaves do not insert more
than 16 wait states to prevent any single access locking the bus
for a large number of clock cycles.
A typical slave will use the HREADY signal to insert the
appropriate number of wait states into the transfer and then the
transfer will complete with HREADY HIGH and OKAY response,
which indicates the successful completion of the transfer. The
ERROR response is used by a slave to indicate some form of error
condition with the associated transfer. Typically this is used for a
protection error, such as an attempt to write to a read-only memory
location. The SPLIT and RETRY response combinations allow
slaves to delay the completion of a transfer, but free up the bus
for use by other masters. These response combinations are usually
only required by slaves that have a high access latency and can
make use of these response codes to ensure that other masters are
not prevented from accessing the bus for long periods of time.

B. Address Decoding
A central address decoder is used to provide a select signal, HSELx,
for each slave on the bus as shown in figure 3. The select signal is
a combinatorial decode of the high-order address signals. A slave
must only sample the address and control signals and HSELx
when HREADY is HIGH, indicating that the current transfer is
completing. Under certain condition, it is possible that HSELx
will be asserted when HREADY is LOW, but the selected slave
will have changed by the time the current transfer completes. If a
NONSEQUENTIAL or SEQUENTIAL transfer is attempted to a
non-existent address location then the default slave should provide
an ERROR response. IDLE or BUSY transfers to nonexistent
locations should result in a zero wait state OKAY response.

C. Arbitration
The arbitration mechanism is used to ensure that only one master
has access to the bus at any one time. The arbiter as shown in fig. 4
performs this function by observing a number of different requests
to use the bus and deciding which is currently the highest priority
master requesting the bus. The arbiter also receives requests from
slaves that wish to complete SPLIT transfers. Any slaves which
are not capable of performing SPLIT transfers do not need to be
aware of the arbitration process, except that they need to observe
the fact that a burst of transfers may not complete if the ownership
of the bus is changed.
A brief description of each of the arbitration signals is given
below:
HBUSREQx, the bus request signal is used by a bus master to
request access to the bus. HLOCKx, indicates to the arbiter that
the master is performing a number of indivisible transfers and

IJECT Vol. 7, Issue 2, April - June 2016

w w w . i j e c t . o r g International Journal of Electronics & Communication Technology   43

 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

the arbiter must not grant any other bus master access to the bus
once the first transfer of the locked transfers has commenced.
HGRANTx, the grant signal is generated by the arbiter and
indicates that the appropriate master is currently the highest
priority master requesting the bus, taking into account locked
transfers and SPLIT transfers. A master gains ownership of the
address bus when HGRANTx is HIGH and HREADY is HIGH
at the rising edge of HCLK. Through HMASTER[3:0], the arbiter
indicates which master is currently granted the bus. The arbiter
indicates that the current transfer is part of a locked sequence by
asserting the HMASTLOCK signal, which has the same timing
as the address and control signals. HSPLIT[15:0], the 16-bit Split
Complete bus is used by a SPLIT-capable slave to indicate which
bus master can complete a SPLIT transaction.

Fig. 4: AHB Arbiter

VI. Split Transfers
SPLIT transfers improve the overall utilization of the bus by
separating (or splitting) the operation of the master providing
the address to a slave from the operation of the slave responding
with the appropriate data.
When a transfer occurs the slave can decide to issue a SPLIT
response if it believes the transfer will take a large number of
cycles to perform. This signals to the arbiter that the master which
is attempting the transfer should not be granted access to the
bus until the slave indicates it is ready to complete the transfer.
Therefore the arbiter is responsible for observing the response
signals and internally masking any requests from masters which
have been SPLIT. During the address phase of a transfer the arbiter
generates a tag, or bus master number, on HMASTER[3:0] which
identifies the master that is performing the transfer. Any slave
issuing a SPLIT response must be capable of indicating that it
can complete the transfer, and it does this by making a note of
the master number on the HMASTER[3:0] signals. Later, when
the slave can complete the transfer, it asserts the appropriate bit,
according to the master number, on the HSPLITx[15:0] signals
from the slave to the arbiter. The arbiter then uses this information
to unmask the request signal from the master and in due course
the master will be granted access to the bus to retry the transfer.
The arbiter samples the HSPLITx bus every cycle and therefore
the slave only needs to assert the appropriate bit for a single cycle
in order for the arbiter to recognize it. In a system with multiple
SPLIT-capable slaves the HSPLITx buses from each slave can
be ORed together to provide a single resultant HSPLIT bus to the
arbiter. In the majority of systems the maximum capacity of 16
bus masters will not be used and therefore the arbiter only requires

an HSPLIT bus which has the same number of bits as there are
bus masters. However, it is recommended that all SPLIT-capable
slaves are designed to support up to 16 masters.

A. Split Transfer Sequence
The basic stages of a SPLIT transaction are:

The master starts the transfer in an identical way to any other 1.	
transfer and issues address and control information
If the slave is able to provide data immediately it may do so. 2.	
If the slave decides that it may take a number of cycles to
obtain the data it gives a SPLIT transfer response. During
every transfer the arbiter broadcasts a number, or tag, showing
which master is using the bus. The slave must record this
number, to use it to restart the transfer at a later time.
The arbiter grants other masters use of the bus and the action 3.	
of the SPLIT response allows bus master handover to occur.
If all other masters have also received a SPLIT response then
the default master is granted.
When the slave is ready to complete the transfer it asserts the 4.	
appropriate bit of the HSPLITx bus to the arbiter to indicate
which master should be regranted access to the bus.
The arbiter observes the HSPLITx signals on every cycle, 5.	
and when any bit of HSPLITx is asserted the arbiter restores
the priority of the appropriate master.
Eventually the arbiter will grant the master so it can re-6.	
attempt the transfer. This may not occur immediately if a
higher priority master is using the bus.
When the transfer eventually takes place the slave finishes 7.	
with an OKAY transfer response.

VII. Results

Fig. 5: Complete data transfer cycles with splitting; with hclk
as clock signal given to design and active low signal hrstn used
to reset the system. Here master 2 is making request to transfer
data. Busreq2=1.

Fig. 6: Extended Signals of Design HBUSREQ2=1 and
HGRANT2=1

IJECT Vol. 7, Issue 2, April - June 2016 ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print)

w w w . i j e c t . o r g 44 International Journal of Electronics & Communication Technology

Fig. 7: Complete Data Transfer Cycles Without Splitting. Here
master1 and master2 are making requests busreq1 and busreq2
with locked access to bus by using lock1 and lock2 signals.

Fig. 8: Extended Signals of Design Without Splitting

VIII. Conclusion
We have designed the intellectual properties of master and slave
depending upon the design specification, data transfer and various
transfer modes that are supported by AMBA bus architecture.
The various scenarios for each component in the AMBA-AHB
bus design are verified effectively during the simulation with
respect to its specification. The main goal of this work is to
study unique design feature of AMBA – AHB i.e. split transfers
that has increased the bus bandwidth. The SPLIT and RETRY
response combinations has allow slaves to delay the completion
of a transfer, but free up the bus for use by other masters. These
response combinations are usually only required by slaves that
have high access latency and can make use of these response codes
to ensure that other masters are not prevented from accessing the
bus for long periods of time. SPLIT response tells the Arbiter to
give priority to all other masters until the SPLIT transfer can be
completed. A SPLIT response is more complicated to implement
than a RETRY, but has the advantage that it allows the maximum
efficiency to be made of the bus bandwidth.

References
[1]	 “AMBA Specification Rev 2.0. ARM Ltd”, 1999.
[2]	 [Online] Available: http://www.arm.com/pdfs/ahb_overview.

pdf
[3]	 “AMBA Design Kit revision r3p0”, Technical Reference

Manual, ARM Inc.
[4]	 “AHB Example AMBA System”, Technical Reference

Manual, ARM Inc.
[5]	 A Verilog HDL test bench primer.

[6]	 Verilog HDL A guide to digital design and synthesis by Samir
Palnitkar.

[7]	 Yashdeep Godhal, Krishnendu Chatterjee, Thomas A.
Henzinger,“Synthesis of AMBA AHB from Formal
Specification: A Case Study”, In International Journal on
Software Tools for Technology Transfer, July 2011.

[8]	 Yangyang Li, Wuchen Wu, LigangHou, Hao Cheng, “A
Study on the Assertion-Based Verification of Digital IC”,
In Proc. of Second International Conference on Information
and Computing Science, 2009, pp. 25-28.

Kajol Singh obtained her B.tech degree
in electronics and communication
from maharaja Surajmal institute of
technology in 2014. She is currently
pursuing M.tech in VLSI design
from Indira Gandhi Delhi Technical
University for Women, New Delhi,
India. Her areas of interests include
CMOS analog and Digital design.

Shefali Verma obtained her B.tech
degree in electronics and communi-
cation from H.M.R Institute of
technology and management in 2013.
She is currently pursuing M.tech in
VLSI design from Indira Gandhi Delhi
Technical University for Women, New
Delhi, India. Her areas of interests
include Low Power Circuit design,
CMOS analog and Digital design.

Shobha Sharma received her M.E
degree in ECE from BITS Pilani.
She is pursuing her Ph.D from Guru
Gobing Singh Indraprastha University.
She joined IGDTUW in 2002 and
is currently working as assistant
professor in department of Electronics
and Communication in IGDTUW. She
has published more than 23 research
papers in international and national
journals. Her areas of interest are

VLSI Design, Digital Circuits and Systems, Advanced Computer
Architecture.

