Improved Speech Recognition Processes Using Hybrid Genetic Vector Quantization

Randeep, Priyanka Jaglan

Dept. of ECE, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India

Abstract
Speech recognition basically means talking to a computer, having it recognize what speakers are saying. Speech is common and efficient form of communication method for people to interact with each other. The person would also like to interact with computer via speech. It can be accomplished by speech recognition system in which computer identifies the word spoken by a speaker into a microphone. Speech recognition is becoming more complex and a challenging task. The research is focusing on large vocabulary, continuous speech capabilities and speaker independence. This paper reviews methods and technologies available for ASR process.

Keywords
Speech Recognition, ASR, Feature Extraction, Speech Models

I. Introduction
Speech recognition systems have a expansive scope of requests from isolated-word recognition as in term dialing and voice-control of mechanisms to constant usual speech recognition as in auto-dictation or broadcast-news transcription [1]. Most useful speech recognition systems encompass of two modules: the front conclude feature module and back conclude association module. Fig. 1 displays a general scheme of a speech recognition system.

Fig. 1: General Scheme of a Speech Recognition System

The task of ASR is to take an acoustic waveform as an input and produce output as a string of words. Basically, the problem of speech recognition can be stated as follows. When given with acoustic observation $X = X_1, X_2, ..., X_n$, the goal is to find out the corresponding word sequence $W = W_1, W_2, ..., W_m$ that has the maximum posterior probability $P(W|X)$ expressed using Bayes theorem as shown in equation (1). The following fig. 2 shows the overview of ASR system.

Fig. 2: Overview of ASR System

$$W = \arg \max P(W|X) = \arg \max \frac{P(W)P(X|W)}{P(X)}$$

Where $P(W)$ is the probability of word W uttered and $P(X|W)$ is the probability of aural observation of X after the word W is uttered.

In order to understand speech, the arrangement normally consists of two phases. They are shouted pre-processing and post processing. Pre-processing involves feature extraction and the post-processing period embodies of constructing a speech recognition engine. Speech recognition engine normally consists of vision concerning constructing an aural ideal, lexicon and grammar. After all these features are given accurately, the recognition engine identifies the most probable match for the given input, and it returns the understood word.

A vital task of growing each ASR arrangement is to select the suitable feature extraction method and the recognition approach. The suitable feature extraction and recognition method can produce good accuracy for the given application. Hence, these two main constituents are studied and contrasted established on its merits and demerits to find out the best method for speech recognition system. The assorted kinds of feature extraction and speech recognition ways are clarified in the pursuing section.

A. Feature Extractor
The designs of the front conclude feature extraction module is a relevant aspect for the presentation of the speech recognizer because this module is aimed to remove the discriminative data utilized by the association module to present recognition. Front conclude design has been an span of alert scrutiny in the last insufficient decades. The two front conclude dominant ways in speech recognition are established on Mel frequency cepstral coefficient (MFCC) [2] and Perceptual Linear Forecast (PLP) [3]. They are the most extensively utilized aural features in present ASR systems. The steps pursued in computing those features are methodical in fig. 2.

In the ease of the speech gesture, the feature extractor will early have to deal alongside the long-term non stationary. For this reason, the speech gesture is normally cut into constructions of concerning 10-30ms and feature extraction is gave on every single piece of the waveform. Secondly, the feature extraction algorithm has to cope alongside the short-term redundancy so that decreased and relevant aural data is extracted. For this patriotic, the representation of the waveform is usually swapped from the temporal area to the frequency area, in that the short-term temporal periodicity is embodied by higher power benefits at the frequency corresponding to the period. Thirdly, feature extraction ought to flat out probable degradations incurred by the gesture after sent on the contact channel. Finally, feature extraction ought to chart the speech representation into a form that is compatible alongside the association instruments in the remainder of the processing chain. Codebook generation algorithms

B. Compression Methods
Subspace allocation clustering and Gaussian tying are two methods utilized to compress speech recognition systems by allocating
parameters amid Gaussian distributions. These compression methods on set alongside a fully trained HMM set, and tie parameters amid the Gaussian constituents of disparate states. Later tying, more training can be gave if necessary. An alternative to clustering afterward training is to early delineate a tiny, fixed set of basis allocations, and next to train a number of interpolation coefficients, but this option is not discovered here.

Similar parameter tying methods are frequently utilized across training in order to vanquish the data sparsity problem. For example, decision tree tying of HMM [4] states or Gaussian constituents pools the obtainable data and permits a larger parameter estimate. The compression methods debated below can be utilized in conjunction alongside decision tree tying but, unlike decision tree tying, do not use each specialist phonetic knowledge.

Subspace compression and Gaussian tying onset alongside a fully trained HMM set alongside N physical states, every single alongside M Gaussian constituents encompassing of a mean and a variance of dimension D, the dimension of the input feature vector. There are a finished of NM Gaussian components. For an uncompressed ideal alongside diagonal covariance matrices, flouting constituent priors and transition matrices, the finished number of Gaussian parameters is

\[
\text{Number of Parameters} = 2NMD
\]

Many of these Gaussian constituents could be comparable to every single supplementary, and the compression methods seize supremacy of this by tying parameters that are close in aural space. Subspace clustering early undertakings every single Gaussian constituent onto K tinier subspaces. In finish, the dimensions of every single of the K tinier subspaces have to add up to D. After \(K = 1 \), the method is equivalent to Gaussian tying. After \(K = D \), the method is equivalent to feature-parameter-tying HMMs. For each subspace, all of the subspace-Gaussians from all states of the HMMs are pooled, and clustered to L prototypes, where \(L \ll NM \). Each original subspace-Gaussian is replaced by its constituents pools the obtainable data and permits a larger parameter estimate. This makes them both slow to decode and high-dimensioned data. Since data factors are represented by the index of the nearest centroid, commonly occurring data have low error, and uncommon data high error. This really is why VQ would work for lossy data compression. It may also be used for lossy information correction and density estimate.

Lossy data correction, or forecast, is made use of to recover data lacking from some dimensions. It is actually completed by locating the nearest group with the data dimensions available, then anticipating the result considering the prices for the missing dimensions, making the assumption that they have the same value as the group's centroid.

D. Genetic Algorithm

Genetic algorithm basically consists of selection, reproduction, mutation. Genetic algorithm is started by the creation of random initial population and then series of new population is created. At every level genetic algorithm uses individual for the creation of upcoming population. In genetic algorithm every member of current population is assigned a score on the basis of fitness value and then raw values are changed in more suitable values. Parents values are called after selection of members on the behalf of fitness values. In our work best candidate selection and current best individual is achieved with the help of genetic algorithm [11].

II. Proposed Work

Speech recognition systems typically contain many distributions patterns. A large number of compression and other parameters are associated with speech data. This makes them both slow to decode speech, and large to store. Techniques have been proposed to decrease the number of parameters and hence increase compression of digital media.

Large vocabulary speech recognition is a computationally expensive task with models requiring a large amount of parameters to obtain good error rates. As we have discussed in this report that there are various techniques available for Automatic Speech recognition (ASR) namely: Vector quantization, Neural Networks, Dynamic Time Warping, Hidden Markov Models and Genetic Algorithms and others.

In speech recognition using neural networks there are several points which are considered

- Clustering of vocabulary
- Parallel implementation of neural networks

C. Vector Quantization

Vector quantization (VQ) is a classical quantization method from signal handling which allows the modeling of probability density functions by the distribution of model vectors. It was originally employed for data compression. It functions by dividing a large ready of factors (vectors) into groups having approximately equivalent number of points nearest to them. Each group is symbolized by its centroid point, as in k-means and several other clustering algorithms [2].

Vector quantization is dependent on the aggressive learning paradigm, so that it is closely pertaining to the self-organizing map model and to sparse programming models utilized in deep studying formulas such as Autoencoder. Vector quantization is actually used for lossy data compression, lossy data modification, design recognition, occurrence estimation and clustering. For occurrence evaluation, the area/volume that is closer to a certain centroid than to any additional is actually inversely proportional for the density (due to the density matching property of the formula). The density coordinating property of vector quantization is powerful, especially for identifying the occurrence of large and high-dimensional data. Since data factors are represented by the index of the nearest centroid, commonly occurring data have low error, and uncommon data high error. This really is why VQ would work for lossy data compression. It may also be used to recover data lacking from some dimensions. It is actually completed by locating the nearest group with the data dimensions available, then anticipating the result considering the prices for the missing dimensions, making the assumption that they have the same value as the group's centroid.
• Improvement in BPTT algorithm

Enhancement means to enhance performance of speech recognition system using Artificial Neural Network technique by clustering of vocabulary. Speech in neural network requires the huge amount of storage space is not only the consideration but also the data transmission rates for communication of continuous media are also significantly large. This kind of data transfer rate is not realizable with today’s technology, or in near the future with reasonably priced hardware.

Our objective is to make the voice recognition more efficient by solving memory problem to store voice data. For this purpose we shall use the previous implemented speech algorithms and shall compare the new implemented algorithms for more number of speakers and different mode of languages like aggression, sad, happy and angry.

The main advantage of using Vector Quantization in Pattern Recognition is its low computational burden when compared with other techniques such as Dynamic Time Warping and Hidden Markov Models. The main drawback when compared to Dynamic Time Warping and Hidden Markov Models is that it does not take into account the temporal evolution of the signals (speech, signature, etc.) because all the vectors are mixed up in the input Signal[4]. The neural network have to face many difficulties during training process due to this large data, so for convenience of neural network training we want to reduce the memory space but data should not be lost. We have used Genetic Algorithm Concept and vector quantization method (speech compression technique) for compression.

III. Results

Fig. 1 shows the best candidate selection by genetic algorithm. Best fitness values and mean fitness values are obtained. Best fitness value is the value which is best among the current population or it is called as the lowest fitness function.

Fig. 4: Best Candidate Selection Using Genetic Algorithm

Fig. 1 shows the best candidate selection by genetic algorithm. Best fitness values and mean fitness values are obtained. Best fitness value is the value which is best among the current population or it is called as the lowest fitness function.

Fig. 4: Best Candidate Selection Using Genetic Algorithm

Fig. 5 shows the current best individual with the genetic algorithm. Average fitness value is the value which is calculated by taking the mean of all fitness values in the entire population. In each generation its value changes as population changes.

Fig. 5: Current Best individual with Genetic Algorithm
Fig. 6 shows the genetic algorithm output for speech recognition. Figure shows the advantages of genetic algorithm in speech recognition.

Fig. 7 shows the best validation performance neural network for speech recognition. Best validation is 0.0016887 at epoch 21. Speech recognition systems typically contain many distributions patterns. A large number of compression and other parameters are associated with speech data. This makes them both slow to decode speech, and large to store. Techniques have been proposed to decrease the number of parameters and hence increase compression of digital media.

Large vocabulary speech recognition is a computationally expensive task with models requiring a large amount of parameters to obtain good error rates. As we have discussed in this report that there are various techniques available for Automatic Speech recognition (ASR) namely: Vector quantization, Neural Networks, Dynamic Time Warping, Hidden Markov Models and Genetic Algorithms and others. The main advantage of using Vector quantization in Pattern Recognition is its low computational burden when compared with other techniques such as Dynamic Time Warping and Hidden Markov Models. The main drawback when compared to Dynamic Time Warping and Hidden Markov Models is that it does not take into account the temporal evolution of the signals (speech, signature, etc.) because all the vectors are mixed up in the input signal.

IV. Conclusion
In this work we have discussed mainly about Speech recognition and using genetic algorithms for the same. We have successfully demonstrated that genetic algorithms can be used for the automatic speech recognition in with more than 79.9% success rate. As we concluded in our results that the system we devised using genetic algorithms and neural networks produced less error rates in speaker recognition as oppose to using only one method at a time. Feature extraction is the most important part of speech recognition system. Every speech has different individual characteristics embedded in utterances. These characteristics can be extracted from a wide range of feature extraction techniques proposed and successfully exploited for speech recognition task. But extracted feature should meet some criteria while dealing with the speech signal, previous methods have focused on ASR using LVQ, MFCC, HMM, and ANN based approaches. In our future works we would like to improve ASR by utilizing hybrid HMM -VQ based feature selection and classification approach.
References

