Massive MIMO Performance over D-GOB, H-SUB Beamforming Algorithms

Surendra Loya, Hari Praneet Sreenivasula, Harshni Vajrala,
Kavya Krishnavarapu, Rupa Sri Volupu

1,2,3,4,5Dept. of ECE, Usha Rama College of Engineering and Technology, Telaprolu, Gannavaram, Andhra Pradesh, India

Abstract
Massive MIMO is to equip at base stations in wireless networks with large arrays of phase coherently co-operating antennas. The use of such arrays facilities spatial multiplexing of many User Equipment’s (UE’s) in the same time frequency resource and yields a coherent beamforming gain that translates directly in to reduced interference and improved cell edge coverage. Downlink beamforming in Massive MIMO either relies on Uplink pilot measurements the use of predetermined grid of beams with user equipment’s reporting their preferred beams mostly in frequency division duplexing operation. In this paper we observed the performance of various feedback based CSI beamforming algorithms based on MATLAB

Keywords
Massive MIMO, D-GOB, H-GOB, H-SUB, Beamforming algorithms

I. Introduction
Massive-multi input multi output (Massive-MIMO) is expected to be one of the essential technologies in meeting the diverse performance requirements of 5G, massive MIMO with hundreds of antennas is considered a key enabler for overcoming challenging propagation conditions. The performance gain of massive MIMO comes at the expense of increased system challenges including reference signal, channel quantization, channel state information feedback, beam steering and tracking, power consumption, beam failure detection and recovery, as well as hardware complexity. Mobile data traffic is increasing by leaps and bounds, driven by the development of new technologies, devices, applications and services. By 2021, growth of at least 10 times the traffic measured during 2015, which was higher than 5 exabytes (EB) per month, was expected to grow by 65% compared to that of 2014. [15] [16]

Today, GSM (Global System for Mobile Communications) and EDGE (Enhanced Data for Global Evolution) technologies dominate the worldwide subscriber market. At the end of the year 2015 reached a figure close to 7.4 billion subscriptions, of which 850 million correspond to users of LTE (Long-Term Evolution). However, considering the rapid rollout of the most advanced mobile telephone networks and the new needs of users, by 2021 an LTE domain with around 4.1 trillion subscriptions is expected, followed by WCDMA (Wide-band Code Division Multiple Access) and HSPA (High Speed Packet Access). In a smaller amount, there will be users of other technologies and 5G (5th Generation mobile networks), which would be launched this year reaching a number of subscriptions in the order of 150 million. The concept of cellular communication system emerged in the search for a solution to the problem of spectral congestion and capacity of users of the first wireless communication systems, in which there was a single high-power transmitter over the entire coverage region. The idea was to divide the service area into small areas called cells, which are composed of a base station with a low power transmitter and operating with a portion of the available spectrum, increase the capacity of the system without incurring major technological changes [17].

The fifth generation of mobile telephony is the technological response to future challenges in terms of connectivity. In addition to offering improvements in mobile broadband services, such as high data rate, reliability and lower latency, its main objective is to support the complexity and high data demand resulting from integrating the Internet applications of objects (IoT, Internet of Things) to the network, without forgetting the commitment to maintain low energy consumption. This work focuses on the study and analysis of the performance of the most accepted beamforming techniques on the downlink of the Massive MIMO systems. Specifically, Digital Grid-of-beams (D-GOB), Hybrid Grid-of-beams (H-GOB) and Hybrid Subspace (H-SUB) are compared in terms of Sum rate, Spectral efficiency and SNR loss.

II. System Model
Consider the DL of the single call Massive MIMO system in which an M antenna BS communicates with K single antenna UE’s in the same frequency resource.

Fig. 1: System Model for Massive MIMO

M antennas can communicate over wireless channel with single antenna UE’s with OFDM with L sub-carriers. Let \(h_k(l) \in \mathbb{C}^{M \times 1} \) for \(k = 1 \ldots K \) and \(l = 1 \ldots L \) it denotes channel vector between base station and kth UE at the lth subcarriers and let

\[
H(l) = \begin{bmatrix} h_1(l) & \cdots & h_K(l) \end{bmatrix}
\]

(1)

Denotes KxM channel matrix. Input and output relation is

\[
y(l) = \sqrt{\rho} H(l)s(l) + n(l)
\]

(2)

Where \(y(l) \in \mathbb{C}^{K \times 1} \) is the vector contains the received signal of the UE’s, \(s(l) \in \mathbb{C}^{M \times 1}, \rho \) signal-to-noise ratio (SNR), \(n(l) \) is a vector of C received noise at the UE’s
III. Beamforming Techniques for Massive MIMO

A. Digital Grid-of-beams (D-GOB)

Each UE individually reports the indices and complex gains of a number, N, of beams and implements in digital domain. UE’s can independently select the beams and also reporting to the beams for each sub-carrier. Achievable sum rate can be determined by average over all the sub-carrier. Denoted by \(C_{D-GOB}(\rho) \). Complex gain of UE’s is

\[g_k(l) = C^T b_k(l) \]

(3)

If it selects the N beams and forms \(Q_k(l) \). The UE reports for \(Q_k(l) \) is

\[\tilde{g}_k(l) = B_k^T(l) h_k(l) \]

(4)

Where MXN matrix, \(B_{(Q_k)} \) is obtained from the relevant beams which is extracting from ‘C’. In the same way, the BS can produce the N beams denotes by \(\hat{h}_k(l) \)

\[\hat{h}_k(l) = \text{arg min} \left\| B_k^T(l) v - \tilde{g}_k(l) \right\|^2 \]

(5)

In general, multi-user interference may occur in this D-GOB due to UE reported beamforms are different to each other i.e., \(Q_k(l) \) & \(Q_j(l) \). We are suppressing that interference between the users. So, that we are applying the ZF for the estimated channel matrix. [2] [3]

\[\hat{H}(l) = \left[\hat{h}_k(l), \ldots, \hat{h}_k(l) \right]^T \]

(6)

ZF precoding [4]

\[p_k(l) = z_k(l) / \left\| z_k(l) \right\| \]

(7)

Received SINR by the Kth UE’s is

\[SINR_k(H(l),\rho) = \rho / K \left| h_k^T(l)p_k(l) \right|^2 / \left[1 + \rho / K \sum_{n=1}^{M} |h_n^T(l)p_n(l)|^2 \right] \]

(8)

Achievable sum rate by using Shannon’s Hartley capacity

\[C_{D-GOB}(H(l),\rho) = \sum_{k=1}^{K} \log_2(1 + SINR_k(H(l),\rho)) \]

(9)

Precoding \(P(l) \) are designed by according to the ZF principle. Precoding is impossible to completely suppress the interference until complete CSI obtained at the BS, unless \(N = \min(M', M) \).

B. Hybrid grid-of-beams (H-GOB)

UE’s sends individually reports to the BS and complex gains of N beams and it is also Beams can applied to across all subcarriers. It also enables the beamforming in the analog Hardware. It has one special case when N=1 and additionally one dispenses with all the digital signal processing.

Sometimes it is also called as an analog-only beamforming. It can be used in the communications standards such as IEEE 802.11ad. [7]

In this H-GOB, The problem is beam selection and it can be optimizing by using

\[\text{arg min} \frac{1}{L} \sum_{l=1}^{L} \left| h_k(l) - \hat{h}_k(l) \right|^2 \]

(10)

subject to \(Q_k \{1, \ldots, M_\} \), \(|Q_k| = N \),

C. Hybrid Subspace (H-SUB)

In this H-SUB the BS can interacts with the all UE’s and decides the common set of N beams that are also for all the UE’s and the reports of UE’s are the complex gains of the N beam and it can implement in the analog domain then the same set of beams are must use for all UE’s.

Vector precoded transmit signal, \(s(l) \)

\[s(l) = B P(l)x(l), \quad l = 1, \ldots, L, \]

(11)

Where x(l) is the information bits from UE, B is the beamforming matrix.
Here, the precoder $p(j)$ is the frequency selective and B is not frequency selective. It can also be realized by using analog hardware (i.e., N phase shifters and N signal combiners) [5-6].

A typical certain structure is enforced on the matrix B to reduce the cost effective. Here B can be obtained from the code book matrix [5-6].

Optimal beam selection for H-SUB is

$$\mathcal{C}_{\text{H-SUB}}([H(I)B]^T_i, \rho)$$

(12)

IV. Result Analysis

A. For Sum Rates or Spectral Efficiency

No of UE’s $(K)=2$ and the sum rate or spectral efficiency of D-GOB, H-SUB at $N=10$ are 10 bits/sec/Hz and at the $N=100$ are 16.56 bits/sec/Hz respectively.

Fig. 5. Scenario 1

No of UE’s $(K)=4$ and sum rate or spectral efficiency of D-GOB, H-SUB at $N=10$ are 17.93, 17.62 bits/sec/Hz respectively and at $N=100$ are 33.01, 33.21 bits/sec/Hz.

Fig. 6: Scenario 2

No of UE’s $(K)=8$ and sum rate or spectral efficiency of D-GOB, H-SUB at $N=10$ are 39.71, 25.66 bits/sec/Hz respectively and at $N=100$ are 65.48, 65.48 bits/sec/Hz respectively.

Fig. 7: Scenario 3

No of UE’s $(K)=16$ and sum rate or spectral efficiency of D-GOB, H-SUB at $N=10$ are 79.55, 3.56 bits/sec/Hz respectively and at $N=100$ are 132, 129 bits/sec/Hz respectively.

Fig. 8: Scenario 4

No of UE’s $(K)=16$ and sum rate or spectral efficiency of D-GOB, H-SUB at $N=10$ are 79.55, 3.56 bits/sec/Hz respectively and at $N=100$ are 132, 129 bits/sec/Hz respectively.

Fig. 9: Scenario 1 using ZF Predecoding Function
No. of UE’s (K)=2, The SNR loss of D-GOB and H-SUB at N=10 are -8.601, -7.31 dB respectively and at N=100 are -15.51, -14.11 dB

No. of UE’s (K)=4, The SNR loss of D-GOB and H-SUB at N=10 are -5.68, -5.33 dB respectively and at N=100 are -12.22, -11.72 dB

No. of UE’s (K)=8, The SNR loss of D-GOB and H-SUB at N=10 are -16.71, -13.69 dB respectively and at N=100 are -31.33, -28.7 dB

No. of UE’s (K)=8, The SNR loss of D-GOB and H-SUB at N=10 are -9.01, -9.146 dB respectively and at N=100 are -30.27, 30.35 dB

V. Conclusion
By increasing the No. of UE’s in scenarios then the Sum rate (or) Spectral efficiency also increasing is to be observed from fig. 5, 6, 7, 8 for the D-GOB, H-SUB, Observing the graphs, we identified that D-GOB is better. By increasing the No. of UE’s is scenarios by using ZF and MR precoding functions decreases the SNR loss

VI. Acknowledgment
We thank the management of Usha Rama college of engineering and technology for all the support and encouragement rendered in this project. We also extended our sincere thanks to the Director K. Rajashekara Rao and Principal G. KVSV Prasad and for providing the required facilities to carry out this work.
References

